ECE 5510 Fall 2009: Homework 10

Due: at 10:45am in the HW locker or in class, Thursday, December 10.

- 1. Y&G 11.6.1
- 2. A WSS signal with $R_X[k] = (\sqrt{1/2})^{|k|}$ is input to an LTI filter with $h[n] = (\sqrt{1/2})^n u[n]$. The output is Y_n .
 - (a) What is $S_X(\phi)$?
 - (b) What is $H(\phi)$?
 - (c) What is $S_Y(\phi)$?
- 3. Let X_n be an i.i.d. random sequence with $\operatorname{Var}_{X_n}[X_n] = \sigma_X^2$ and zero mean. A random process Y_n is called auto-regressive with order 1 (AR-1) if it can be modeled as:

$$Y_n = a_1 Y_{n-1} + X_n$$

Basically, Y_n is the output of a filter, of which X_n is the input. In order to compute the most recent value of our output Y_n , we add part of the old value Y_{n-1} and the new input X_n .

Let Y_n be an AR-1 random process, and:

- (a) Find the filter frequency response $H(\phi) = \frac{Y(\phi)}{X(\phi)}$.
- (b) Find $R_Y[k]$ using the result of (a).
- (c) Find $S_Y(\phi)$.
- 4. A WSS signal has the following $R_X[k]$:

$$R_X[k] = \begin{cases} 2, & k = 0\\ 1, & k \in \{-1, 1\}\\ 0, & o.w. \end{cases}$$

It is input to a LTI filter with impulse response $h_n = 10\delta_n$, and the output is Y_n . What is the PSD of Y, *i.e.*, $S_Y(\phi)$?

- 5. Zero-mean white Gaussian WSS R.P. N(t) has PSD $S_N(f) = 1$. N(t) is input into an LTI system with $h(t) = 0.1e^{-t/10}u(t)$, where u(t) is the unit step function. The output is X(t).
 - (a) Compute the PSD $S_X(f)$ of the output X(t).
 - (b) Compute the autocovariance $C_X(\tau)$ and the variance $\sigma^2_{X(t)}$ of X(t).
 - (c) Compute P[X(0.2) > 0.1].
 - (d) Write the joint pdf, $f_{X(1),X(6)}(x_1, x_6)$.
- 6. Y&G 12.1.1
- 7. Y&G 12.2.2. Come up with an expression, and check it in Matlab for n = 2, 3, and 4.