
ECE 5510 Fall 2009: Homework 10 Solutions

1. Y&G 11.6.1: See additional pages.

2. (a) SX(φ) = DTFT
{

(
√

1/2)|k|
}

= 1/2

3/2−
√

2 cos(2πφ)
.

(b) H(φ) = DTFT
{

(
√

1/2)nu[n]
}

= 1

1−
√

1/2e−j2πφ

(c) Note that

|H(φ)|2 =
1

1 −
√

1/2e−j2πφ

1

1 −
√

1/2e+j2πφ
=

1

3/2 −
√

2 cos(2πφ)

So,

SY (φ) = SX(φ)|H(φ)|2 =
1/2

[3/2 −
√

2 cos(2πφ)]2

3. For parts (b) and (c) of this problem, you could either (1) take the DTFT of the difference
equation, to find the frequency response of the transfer function, and then use that
result to find SY (φ) and then RY [k], or (2) generate RY [k] without the DTFT, using the
definition of the autocorrelation function.

(a) Taking the DTFT of both sides of Yn = a1Yn−1 + Xn, and then solving,

Y (φ) = a1Y (φ)e−j2πφ + X(φ)

Y (φ)
[

1 − a1e
−j2πφ

]

= X(φ)

H(φ) =
Y (φ)

X(φ)
=

1

1 − a1e−j2πφ

(1)

(b) I wrote parts (b) and (c) out of order. Using the result of part (c),

RY (k) = DTFT−1

{

σ2
X

1 + a2
1 − 2a1 cos(2πφ)

}

RY (k) =
σ2

X

1 − a2
1

a
|k|
1

(2)

(c) Note RX(k) = σ2
Xδ[k]. Thus SX(φ) = σ2

X . So

SY (φ) = SX(φ)|H(φ)|2 = σ2
X

1

1 − a1e−j2πφ

1

1 − a1e+j2πφ

=
σ2

X

1 + a2
1 − 2a1 cos(2πφ)

(3)
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(d) This note is an alternate way to find the solution to (b), purely in the time domain.
Starting at time n + k the output equation is,

Yn+k = a1Yn+k−1 + Xn+k

Then plugging in recursively for Yn+k−1,

Yn+k = a1(a1Yn+k−2 + Xn+k−1) + Xn+k = a2
1Yn+k−2 + a1Xn+k−1 + Xn+k

Yn+k = a2
1(a1Yn+k−3 + Xn+k−2) + a1Xn+k−1 + Xn+k

= a3
1Yn+k−3 + a2

1Xn+k−2 + a1Xn+k−1 + Xn+k

We can see that after k iterations of this, we’d have

Yn+k = ak
1Yn + ak−1

1 Xn+1 + · · · + a2
1Xn+k−2 + a1Xn+k−1 + Xn+k

= ak
1Yn +

k
∑

i=1

ak−i
1 Xn+i

Then, we find RY [k]. Assuming that k > 0,

RY [k] = E [YnYn+k] = E

[

ak
1Y

2
n +

k
∑

i=1

ak−i
1 Xn+iYn

]

Because of the independence of Xn+i and Yn,

RY [k] = ak
1E

[

Y 2
n

]

+

k
∑

i=1

ak−i
1 E [Xn+i]E [Yn]

Since we know that Xn is a zero-mean r.p., the term in the sum disappears.

RY [k] = ak
1E

[

Y 2
n

]

(4)

To find the mean (and variance), we can go back to the original expression for Yn

and take the expected value (and the variance) of both sides,

E [Yn+k] = a1E [Yn+k−1] + E [Xn+k]

Var [Yn+k] = a1Var [Yn+k−1] + Var [Xn+k]

Since Y is WSS, the mean and variance are both constant,

µY (1 − a1) = E [Xn+k] = 0 thus µY = 0

σ2
Y =

1

1 − a1
σ2

X

Plugging these back into (4),

RY [k] =
σ2

X

1 − a1
ak

1

Now, for the k < 0 case, note that

Yn = a−k
1 Yn+k +

k
∑

i=1

ak−i
1 Xn+i+k
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So for the k < 0 case, similar analysis to that above results in RY [k] =
σ2

X

1−a1
a−k

1 . So
overall, for all k, we have

RY [k] =
σ2

X

1 − a1
a
|k|
1

This agrees with our frequency domain solution written above.

4. From the definition of the DTFT,

SX(φ) = 1e−j2π(−1)φ + 2e−j2π(0)φ + 1e−j2π(1)φ = 2 + 2 cos(2πφ)

Since H(φ) = 10,
SY (φ) = |H(φ)|2SX(φ) = 200[1 + cos(2πφ)]

5. (a) H(f) is given by

H(f) =
0.1

0.1 + j2πf

Thus

SX(f) = SN (f)|H(f)|2 =
0.01

0.01 + (2πf)2

(b) Since N(t) has zero-mean, and h(t) is an LTI filter, X(t) is zero mean and CX(τ) =
RX(τ),

RX(τ) = F−1

{

2

2

0.01

0.01 + (2πf)2

}

= 0.05e−0.1|τ |

Thus the variance is σ2
X(t) = RX(0) = 0.05.

(c) Since N(t) is Gaussian and h(t) is an LTI filter, X(0.2) is Gaussian. Thus

P [X(0.2) > 0.1] = P

[

X(0.2)√
0.05

>
0.1√
0.05

]

= 1 − Φ

(

0.1√
0.05

)

≈ 0.3274

(d) Because of the Gaussian input and the LTI filter, X(1),X(6) are jointly Gaussian,
both with zero mean and variance 0.05. The covariance is based on a τ of 6− 1 = 5,
so CX(5) = 0.05e−0.5, for a correlation coefficient of ρ = e−0.5. As a result, we can
write the joint pdf,

fX(1),X(6)(x1, x6) =
1

0.1π
√

1 − e−1
exp

{

− 1

0.1(1 − e−1)

[

x2
1 − 2

e−0.5

0.05
x1x6 + x2

6

]}

6. Y&G 12.1.1: See additional pages.

7. Y&G 12.2.2: Since P(1) = P as given above, we can use matrix multiplication to find
P(2), P(3) and P(4):

P(2) = P(1) ·P(1) =





0.5 0.5 0
0.5 0.5 0
3
8

3
8

1
4



 P(3) = P(2) ·P(1) =





0.5 0.5 0
0.5 0.5 0
7
16

7
16

1
8





P(4) = P(3) ·P(1) =





0.5 0.5 0
0.5 0.5 0
15
32

15
32

1
16



 (5)
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It is clear that the first two rows stay identical each time. In the 3rd row, the first two
elements get 1/2n+1 closer to 1/2 each time, while the last element is 1/2n:

P(n) =





0.5 0.5 0
0.5 0.5 0

1
2 − 1

2n+1
1
2 − 1

2n+1
1
2n



 (6)

In Matlab, the following code:

P = [0.5, 0.5, 0; 0.5, 0.5, 0; 0.25, 0.25, 0.5];

for n=2:4,

error = P^n - [0.5, 0.5, 0; 0.5, 0.5, 0; ...

0.5-(0.5)^(n+1), 0.5-(0.5)^(n+1), (0.5)^n]

end

returns ‘error’ matrices of all zeros, indicating that the model of (6) and the directly
calculated P

n are identical for n = 2, 3, 4.



Problem 11.6.1 Solution
Since the random sequence Xn has autocorrelation function

RX [k] = δk + (0.1)|k|, (1)

We can find the PSD directly from Table 11.2 with 0.1|k| corresponding to a|k|. The table yields

SX (φ) = 1 +
1− (0.1)2

1 + (0.1)2 − 2(0.1) cos 2πφ
=

2− 0.2 cos 2πφ

1.01− 0.2 cos 2πφ
. (2)

Problem 11.7.1 Solution
First we show that SY X(f) = SXY (−f). From the definition of the cross spectral density,

SY X (f) =
∫ ∞

−∞
RY X(τ)e−j2πfτ dτ (1)

Making the subsitution τ ′ = −τ yields

SY X (f) =
∫ ∞

−∞
RY X(−τ ′)ej2πfτ ′

dτ ′ (2)

By Theorem 10.14, RY X(−τ ′) = RXY (τ ′). This implies

SY X (f) =
∫ ∞

−∞
RXY (τ ′)e−j2π(−f)τ ′

dτ ′ = SXY (−f) (3)

To complete the problem, we need to show that SXY (−f) = [SXY (f)]∗. First we note that since
RXY (τ) is real valued, [RXY (τ)]∗ = RXY (τ). This implies

[SXY (f)]∗ =
∫ ∞

−∞
[RXY (τ)]∗[e−j2πfτ ]∗ dτ (4)

=
∫ ∞

−∞
RXY (τ)e−j2π(−f)τ dτ (5)

= SXY (−f) (6)

Problem 11.8.1 Solution
Let a = 1/RC. The solution to this problem parallels Example 11.22.

(a) From Table 11.1, we observe that

SX (f) =
2 · 104

(2πf)2 + 104
H(f) =

1
a + j2πf

(1)

By Theorem 11.16,

SY (f) = |H(f)|2 SX (f) =
2 · 104

[(2πf)2 + a2][(2πf)2 + 104]
(2)

To find RY (τ), we use a form of partial fractions expansion to write

SY (f) =
A

(2πf)2 + a2
+

B

(2πf)2 + 104
(3)

399



Problem Solutions – Chapter 12

Problem 12.1.1 Solution
From the given Markov chain, the state transition matrix is

P =

⎡
⎣P00 P01 P02

P10 P11 P12

P20 P21 P22

⎤
⎦ =

⎡
⎣ 0.5 0.5 0

0.5 0.5 0
0.25 0.25 0.5

⎤
⎦ (1)

Problem 12.1.2 Solution
This problem is very straightforward if we keep in mind that Pij is the probability that we transition
from state i to state j. From Example 12.1, the state transition matrix is

P =
[
P00 P01

P10 P11

]
=
[
1− p p

q 1− q

]
(1)

Problem 12.1.3 Solution
In addition to the normal OFF and ON states for packetized voice, we add state 2, the “mini-OFF”
state. The Markov chain is

0 1 2

P00 P11 P22

P01 P12

P10
P21

P20

The only difference between this chain and an arbitrary 3 state chain is that transitions from 0,
the OFF state, to state 2, the mini-OFF state, are not allowed. From the problem statement, the
corresponding Markov chain is

P =

⎡
⎣P00 P01 P02

P10 P11 P12

P20 P21 P22

⎤
⎦ =

⎡
⎣0.999929 0.000071 0

0.000100 0.899900 0.1
0.000100 0.699900 0.3

⎤
⎦ . (1)

Problem 12.1.4 Solution
Based on the problem statement, the state of the wireless LAN is given by the following Markov
chain:

1 32

0.5 0.06 0.06

0.5 0.90.90.9

0.04

0.020.04

0.04

0.04

0

The Markov chain has state transition matrix

P =

⎡
⎢⎢⎣

0.5 0.5 0 0
0.04 0.9 0.06 0
0.04 0 0.9 0.06
0.04 0.02 0.04 0.9

⎤
⎥⎥⎦ . (1)

416


