ECE 5510 Fall 2009: Homework 2 Solutions

1. Y&G 1.5.4. See attached pages.

BAREEE- R SR

Since k balls can be selected from the n +m balls, and order doesn’t matter, there are S| = ("7

Y&G 1.6.4. See attached pages.
Y&G 1.7.4. See attached pages.
Y&G 1.7.10. See attached pages.

n+m)

possible outcomes in the sample space.

(a)

Let the event A, = {r of the k balls are red}. Only when r < k is the event A, possible
(otherwise it has zero probability). Similarly, it must be that £ —r < m and r < n. Since
any combination is equally likely, we use the discrete uniform probability law to say that
PlA] = ‘éf". Again, A, consists of outcomes in which r red balls (and thus k — r black balls)
are chosen. Assuming that the above inequalities are satisfied, we obtain |A,| by counting each
of the ways that r red balls are drawn from among the n red balls, (:‘), and the ways that the
remaining k — r balls are drawn among the m black balls, (kTT,) Thus the total number of

Al (6"

favorable outcomes (:f) ( krfr)

P[A] = = T
St (")
Here, note that {A,} for r =0,1,...,k form a partition of the sample space. This is because

Ay N Ay, =0 for any rg # r1 since we can’t have any outcome which has exactly ¢ red balls
and exactly ry red balls in it. Further, there are no outcomes that don’t have between 0 and
k red balls in them. Since {A,} is a partition of S, Uf:o A, = S and thus

O 06 - £ -5
QOAT = 15| = <"Zm>

The first equality on the second line is due to the fact that {A,} are mutually exclusive.

6. Let the events be:

(a)

dieA: choose die A
dieB: choose die B
O,,: olive face on throw n

L,,: lavender face on throw n

The nth throw is no different from any throw of the die. Using the law of total probability,
P[O,] = P[O,NndieA]+ P[0, NdieB]
= PJ[O,|dieA] P [dieA] + P [O,|dieB] P [dieB]|
= (5/6)(1/2) +(1/2)(1/2) =2/3
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Figure 1: Tree.
(b) These two throws are NOT independent! They both depend on the outcome of the one coin
flip.

PO, NOpt1] = PO, NOpy1 NdieA] + PO, N Opqq NdieB]
= P[0, N Opy1|dieA] P [dieA] + P [O,, N Op41]dieB] P [dieB]
= (5/6)(5/6)(1/2) + (1/2)(1/2)(1/2) = 17/36

PlOns1NOp NN O]
PlOIN---NO,]

P[On+1|01 N---N On] =
Extrapolating from (b), this is

(5/6)""1(1/2) + (1/2)"*1(1/2)
(5/6)"(1/2) + (1/2)"(1/2)
(5/6) +(1/2)(3/5)"
1+ (3/5)"

P [On+1|01 n---N On]

As n becomes large, (3/5)" — 0. Thus the numerator approaches 5/6 and the denominator
approaches 1. So P [0,,4+1|01 N--- N O,] approaches 5/6, indicating that die A is being used.



Problem 1.5.2 Solution
Let s; denote the outcome that the roll is 4. So, for 1 < i < 6, R; = {s;}. Similarly, G; =
{5.7’.;_1, ey 86}.
(a) Since Gy = {s2, 53, 54, S5, 56} and all outcomes have probability 1/6, P[G;] = 5/6. The event
R3G1 = {s3} and P[R3G;] = 1/6 so that

P[Rs|G1] = %%?Tl] = % (1)

(b) The conditional probability that 6 is rolled given that the roll is greater than 3 is

P [Re|Gs] = P[ReGs] _ _ Plss] _ 1/6

P[Gs]  Plsa 55,5 3/6 2)

(c) The event E that the roll is even is E = {s2, 54,586} and has probability 3/6. The joint
probability of G5 and F is '

P[G3E] = P|[sa,s6) =1/3. (3)
The conditional probabilities of G given E is
P[G3E] 1/3 2
Bl=—r— = = -, 4
(d) The conditional probability that the roll is even given that it’s greater than 3 is
P[EG; 1/3 2
PBIGy = T2 _ 13 2 )

P[Gs) ~ 1/2 3

Problem 1.5.3 Solution
Since the 2 of clubs is an even numbered card, Cy C E so that P[CyoE] = P[Cy] = 1/3. Since
PlE] =2/3,
P[CRE] 1/3 .

P[Co|E] = ———— = — =1/2. 1
The probability that an even numbered card is picked given that the 2 is picked is
PIC:E] 13
P[C)) 1/3

P[E|Cy] = (2)

Problem 1.5.4 Solution

Define D as the event that a pea plant has two dominant y genes. To find the conditional probability
of D given the event Y, corresponding to a plant having yellow seeds, we look to evaluate
P|DY

PlY]

Note that P[DY] is just the probability of the genotype yy. From Problem 1.4.3, we found that
with respect to the color of the peas, the genotypes ¥y, yg, gy, and gg were all equally likely. This
implies

P[D|Y] =

P[DY]=Plyyl=1/4 P[Y]=Plyy,gy,y9) = 3/4 (2)
Thus, the conditional probability can be expressed as
P[DY] 1/4
PDIY] = ——=-"—=1/3. .
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(c) Since C' and D are independent,

P[CND]=P[C|P[D]=15/64. (3)
The next few items are a little trickier. From Venn diagrams, we see
P[CND%=P[C]-P[CND]=5/8-15/64 = 25/64. (4)
It follows that
P[CUD®=P[C]+P[D] - P[CND (5)
=5/8 4+ (1 —-3/8) —25/64 = 55/64. (6)

Using DeMorgan’s law, we have
P[C°ND=P[(CUD)]=1-P[CUD]=15/64. (7)

(d) Since P[C°D¢] = P[C¢|P[D¢}, C° and D¢ are independent.

Problem 1.6.4 Solution

(a) Since ANB =0, PJAN B] = 0. To find P[B], we can write
P[AuB]=PI[A+P[B]—-P[AN B] (1)
5/8 = 3/8+ P[B] —0. 2)
Thus, P[B] = 1/4. Since A is a subset of B¢, P[AN B¢] = P[A] = 3/8. Furthermore, since
A is a subset of B, P[AU B¢ = P[B¢] = 3/4.

(b) The events A and B are dependent because

P[AB)=0+#£3/32=P[A] P[B]. (3)
(c) Since C and D are independent P[C' D] = P[C]P[D]. So
P[D]:%:%z%& (4)

Tn addition, P[C N D¢| = P[C] — P[CN D] =1/2 —1/3 = 1/6. To find P[C® N D¢, we first
observe that

P[CUD)=P[C]+P[D]-P[CND]=1/2+2/3—-1/3=5/6. (5)
By De Morgan’s Law, C¢N D¢ = (C U D)°. This implies
P[C°ND=P[(CUD)|=1-P[CUD]=1/6. (6)

Note that a second way to find P[C® N D9 is to use the fact that if C and D are independent,
then C°¢ and D¢ are independent. Thus

P[C°NDY =P[CIP[D=(1-P[C])(1 - P[D]) =1/6. (7)
Finally, since C' and D are independent events, P[C|D] = P[C] =1/2.
(d) Note that we found P{C'U D] = 5/6. We can also use the earlier results to show
P[CUDY=P[C]+P[D|-P[CND°=1/2+(1-2/3)-1/6=2/3. - (8)
(e) By Definition 1.7, events C' and D¢ are independent because
P[CND=1/6=(1/2)(1/3) = P[C|P[D]. (9)
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3/ Go ¢G1G2  3/8
1/4 By G1B> 1/8

/4 -Gy eB1Gy 1/8

1/2 By
3/4~B2 eB1B>» 3/8

The game goes into overtime if exactly one free throw is made. This event has probability

P[O] = P[G1By) + P[BGy] = 1/8 +1/8 = 1/4. e

Problem 1.7.4 Solution
The tree for this experiment is

1/4 _ H eAH 1/8

1/2 A4/4T «AT 3/8
§B 3/ u eBH 3/8
1/4:T BT 1/8

The probabhility that you guess correctly is
P[C] = P[AT] + P[BH] = 3/8 +3/8 = 3/4. (1)

Problem 1.7.5 Solution

The P[—[H] is the probability that a person who has HIV tests negative for the disease. This is
referred to as a false-negative result. The case where a person who does not have HIV but tests
positive for the disease, is called a false-positive result and has probability P[+|H¢]. Since the test
is correct 99% of the time,

P[—|H] = P[+]|H¢ = 0.01. (1)
Now the probability that a person who has tested positive for HIV actually has the disease is
P[+,H P+ H
Pl =2t P A 2)

: P[+] ~ P[+,H)+P[+ H

We can use Bayes’ formula to evaluate these joint probabilities.

P[+|H] P[H] :
P = srympm + Pad PIET (3)
_ (0.99)(0.0002) @
~ (0.99)(0.0002) + (0.01)(0.9998)
= 0.0194. (5)

Thus, even though the test is correct 99% of the time, the probability that a random person who
tests positive actually has HIV is less than 0.02. The reason this probability is so low is that the a
priori probability that a person has HIV is very small.
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Problem 1.7.9 Solution

(a) We wish to know what the probability that we find no good photodiodes in n pairs of diodes.
Testing each pair of diodes is an independent trial such that with probability p, both diodes
of a pair are bad. From Problem 1.7.6, we can easily calculate p.

p = P [both diodes are defective] = P [D1 D3] = 6/25. (1)

The probability of Z,,, the probability of zero acceptable diodes out of n pairs of diodes is p™
because on each test of a pair of diodes, both must be defective.

n n
6
PlZ,) = =p"={= 2
[Zn] Llp p (25> (2)
(b) Another way to phrase this question is to ask how many pairs must we test until P[Z,] < 0.01.

Since P[Z,] = (6/25)", we require

6\" In0.01
— < 0. > ——— = 3.23.
<%>_om > n> e =30 (3)

Since n must be an integer, n = 4 pairs must be tested.

Problem 1.7.10 Solution

The experiment ends as soon as a fish is caught. The tree resembles

From the tree, P[C1] = p and P[C2] = (1 — p)p. Finally, a fish is caught on the nth cast if no fish
were caught on the previous n — 1 casts. Thus,

P[Chl=(1—-p)" 'p. (1)

Problem 1.8.1 Solution
There are 2° = 32 different binary codes with 5 bits. The number of codes with exactly 3 zeros
equals the number of ways of choosing the bits in which those zeros occur. Therefore there are

(g) = 10 codes with exactly 3 zeros.

Problem 1.8.2 Solution

Since each letter can take on any one of the 4 possible letters in the alphabet, the number of 3
letter words that can be formed is 4% = 64. If we allow each letter to appear only once then we
have 4 choices for the first letter and 3 choices for the second and two choices for the third letter.
Therefore, there are a total of 43 -2 = 24 possible codes.
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