
ECE 5510 Fall 2009: Homework 7 Solutions

1. (a) Find the mean and standard deviation of Y = 20 +
∑10

i=1 Xi. For the mean, using
the linearity of the expected value,

EY [Y ] = EX

[

20 +
10
∑

i=1

Xi

]

= 20 +
10
∑

i=1

EXi
[Xi] = 20 + 10(2) = 40 minutes.

For the variance, because the Xi are independent, we know the covariance terms are
zero, so that

VarY [Y ] = VarX

[

20 +

10
∑

i=1

Xi

]

=

10
∑

i=1

VarXi
[Xi] = 10(0.5)2 = 2.5 minutes2.

The standard deviation is always the square root of the variance:
√

2.5 ≈ 1.58
minutes.

(b) Now, Y = 30 +
∑5

i=1 Xi, so

EY [Y ] = EX

[

30 +

5
∑

i=1

Xi

]

= 30 +

5
∑

i=1

EXi
[Xi] = 30 + 5(2) = 40 minutes.

VarY [Y ] = VarX

[

30 +

5
∑

i=1

Xi

]

=

5
∑

i=1

VarXi
[Xi] = 5(0.5)2 = 1.25 minutes2. (1)

Thus the standard deviation is
√

1.25 ≈ 1.12 minutes.

(c) You and your boss have the same mean travel time, but your route has twice the
standard deviation. Thus your travel time is more variable. Assuming that you
both allow the same amount of time (for example, 42 minutes) to get to work, your
boss will be more predictably ‘on-time’. So the analysis does not back up your boss’
claim.

2. Y&G 5.7.7: See attached pages.

3. Y&G 10.5.1: See attached pages.
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4. Y&G 10.5.5: See attached pages.

5. Y&G 10.5.6: See attached pages.

6. Let Y (t) be a Poisson process with arrival rate λ. Denote the first arrival time as T1 and
the second arrival time as T2.

(a) Define ∆ = T2 − T1. Because (0, T1) and (T1, T2) are non-overlapping, by the in-
dependent increments property of Poisson processes, T1 and ∆ are independent, so
that

fT1,∆)(t1, δ) = fT1
(t1)f∆(δ)

Both are Exponential with arrival rate λ, just with different durations of time, so,
as long as δ ≥ 0,

fT1,∆(t1, δ) = λe−λt1λe−λδ = λ2e−λ(t1+δ)

Since T2 = T1 + ∆, for ∆ ≥ 0, then if T2 = t2, we can use δ = t2 − t1,

fT1,T2
(t1, t2) = fT1,∆(t1, t2 − t1) == λ2e−λ(t1+t2−t1) = λ2e−λt2

Since δ ≥ 0, we must specify for a final solution that t2 ≥ t1, i.e.,

fT1,T2
(t1, t2) =

{

λ2e−λt2 , t2 ≥ t1 ≥ 0
0, o.w.

(b) The support of (T1, T2) is t2 ≥ t1 ≥ 0 and is shown in Fig. 1.
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Figure 1: (b) Support of (T1, T2), and (d) event {T1 < r} ∩ {T2 ≥ r} in Problem (6).

(c) See Fig. 1. For r ≥ 0,

P [A] = P [{T1 < r} ∩ {T2 ≥ r}]

=

∫ r

t1=0

∫ ∞

t2=r
fT1,T2

(t1, t2)dt1dt2

= λ2

∫ r

t1=0

∫ ∞

t2=r
e−λt2dt1dt2

= λ2

(
∫ r

t1=0
dt1

)(
∫ ∞

t2=r
e−λt2dt2

)

= λ2r
1

λ
e−λr = λre−λr
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Equivalently, since I did not require that you integrate to find P [A], you could have
used the Poisson pmf to find the probability that N(r) = 1, i.e., the number of
arrivals at time r equals 1,

pN(r)(1) = P [N(r) = 1] =
(λr)1

1!
e−λr =

{

λre−λr, r > 0
0, o.w.

(d) This solution requires starting with the joint pdf of T1, T2, that is, fT1,T2
(t1, t2). Step

2, condition on the event A to find fT1,T2|A(t1, t2|A). Step 3, integrate out T2 to find
fT1|A(t1). This three step solution is longer than just using fT1

(t1) and conditioning
on A, because the event A depends on both T1 and T2. Below, you can see Step 3

(integrate t2 from r to ∞), Step 2 (
fT1,T2

(t1,t2)

P [A] is the conditional pdf of T1, T2 given

event A, and Step 1 (plug in the joint pdf from above):

fT1|A(t1) =

∫ ∞

t2=r

fT1,T2
(t1, t2)

P [A]
dt2 =

∫ ∞

t2=r

λ2e−λt2

λre−λr
dt2

=
λ

r
eλr

∫ ∞

t2=r
e−λt2dt2 =

1

r
eλre−λr =

1

r

=

{

1
r , 0 ≤ t1 ≤ r
0, o.w.

Thus t1 is uniform between 0 and r! This means that given that there was exactly
one arrival in the interval [0, r], it was equally likely to be at any time in that interval.

7. Using λ = 1/10 minutes,

(a) Let t = 0 begin when Hacker A starts to break in, and T1 be the time of the first
system check by the admin. T1 is Exponential, so from the CDF of the Exponential
distribution,

P [A won’t get caught] = P [T1 > 10] = 1 − (1 − e−10/10) = e−1 ≈ 0.368

Or, equivalently, let N be the number of police checks in the 10 minute period, which
has a Poisson pmf:

P [A won’t get caught] = P [N = 0] = PN (0) = e−10/10 = e−1

(b) Here, let M be the number of police checks in the 20 minute period, which also has
a Poisson pmf:

P [B won’t get caught] = P [M < 2] = PM (0) + PM (1)

= e−20/10 +
(20/10)1

1!
e−20/10 = e−2 + 2e−2 ≈ 0.406

(Hacker B has better chances of getting away with it!)



(a) From Theorem 5.13, Y has covariance matrix

CY = QCXQ′ (1)

=
[
cos θ − sin θ
sin θ cos θ

] [
σ2

1 0
0 σ2

2

] [
cos θ sin θ
− sin θ cos θ

]
(2)

=
[
σ2

1 cos2 θ + σ2
2 sin2 θ (σ2

1 − σ2
2) sin θ cos θ

(σ2
1 − σ2

2) sin θ cos θ σ2
1 sin2 θ + σ2

2 cos2 θ

]
. (3)

We conclude that Y1 and Y2 have covariance

Cov [Y1, Y2] = CY(1, 2) = (σ2
1 − σ2

2) sin θ cos θ. (4)

Since Y1 and Y2 are jointly Gaussian, they are independent if and only if Cov[Y1, Y2] =
0. Thus, Y1 and Y2 are independent for all θ if and only if σ2

1 = σ2
2. In this case, when

the joint PDF fX(x) is symmetric in x1 and x2. In terms of polar coordinates, the PDF
fX(x) = fX1,X2(x1, x2) depends on r =

√
x2

1 + x2
2 but for a given r, is constant for all

φ = tan−1(x2/x1). The transformation of X to Y is just a rotation of the coordinate system
by θ preserves this circular symmetry.

(b) If σ2
2 > σ2

1, then Y1 and Y2 are independent if and only if sin θ cos θ = 0. This occurs in the
following cases:

• θ = 0: Y1 = X1 and Y2 = X2

• θ = π/2: Y1 = −X2 and Y2 = −X1

• θ = π: Y1 = −X1 and Y2 = −X2

• θ = −π/2: Y1 = X2 and Y2 = X1

In all four cases, Y1 and Y2 are just relabeled versions, possibly with sign changes, of X1 and
X2. In these cases, Y1 and Y2 are independent because X1 and X2 are independent. For
other values of θ, each Yi is a linear combination of both X1 and X2. This mixing results in
correlation between Y1 and Y2.

Problem 5.7.7 Solution
The difficulty of this problem is overrated since its a pretty simple application of Problem 5.7.6. In
particular,

Q =
[
cos θ − sin θ
sin θ cos θ

]∣∣∣∣
θ=45◦

=
1√
2

[
1 −1
1 1

]
. (1)

Since X = QY, we know from Theorem 5.16 that X is Gaussian with covariance matrix

CX = QCYQ′ (2)

=
1√
2

[
1 −1
1 1

] [
1 + ρ 0

0 1− ρ

]
1√
2

[
1 1
−1 1

]
(3)

=
1
2

[
1 + ρ −(1− ρ)
1 + ρ 1− ρ

] [
1 1
−1 1

]
(4)

=
[
1 ρ
ρ 1

]
. (5)

225



Wn both use Xn−1 in their averaging, Wn−1 and Wn are dependent. We can verify this observation
by calculating the covariance of Wn−1 and Wn. First, we observe that for all n,

E [Wn] = (E [Xn] + E [Xn−1])/2 = 30 (1)

Next, we observe that Wn−1 and Wn have covariance

Cov [Wn−1, Wn] = E [Wn−1Wn]− E [Wn] E [Wn−1] (2)

=
1
4
E [(Xn−1 + Xn−2)(Xn + Xn−1)]− 900 (3)

We observe that for n �= m, E[XnXm] = E[Xn]E[Xm] = 900 while

E
[
X2

n

]
= Var[Xn] + (E [Xn])2 = 916 (4)

Thus,

Cov [Wn−1, Wn] =
900 + 916 + 900 + 900

4
− 900 = 4 (5)

Since Cov[Wn−1, Wn] �= 0, Wn and Wn−1 must be dependent.

Problem 10.4.3 Solution
The number Yk of failures between successes k − 1 and k is exactly y ≥ 0 iff after success k − 1,
there are y failures followed by a success. Since the Bernoulli trials are independent, the probability
of this event is (1− p)yp. The complete PMF of Yk is

PYk
(y) =

{
(1− p)yp y = 0, 1, . . .
0 otherwise

(1)

Since this argument is valid for all k including k = 1, we can conclude that Y1, Y2, . . . are identically
distributed. Moreover, since the trials are independent, the failures between successes k − 1 and k
and the number of failures between successes k′− 1 and k′ are independent. Hence, Y1, Y2, . . . is an
iid sequence.

Problem 10.5.1 Solution
This is a very straightforward problem. The Poisson process has rate λ = 4 calls per second. When
t is measured in seconds, each N(t) is a Poisson random variable with mean 4t and thus has PMF

PN(t) (n) =
{

(4t)n

n! e−4t n = 0, 1, 2, . . .
0 otherwise

(1)

Using the general expression for the PMF, we can write down the answer for each part.

(a) PN(1)(0) = 40e−4/0! = e−4 ≈ 0.0183.

(b) PN(1)(4) = 44e−4/4! = 32e−4/3 ≈ 0.1954.

(c) PN(2)(2) = 82e−8/2! = 32e−8 ≈ 0.0107.
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Problem 10.5.2 Solution
Following the instructions given, we express each answer in terms of N(m) which has PMF

PN(m) (n) =
{

(6m)ne−6m/n! n = 0, 1, 2, . . .
0 otherwise

(1)

(a) The probability of no queries in a one minute interval is PN(1)(0) = 60e−6/0! = 0.00248.

(b) The probability of exactly 6 queries arriving in a one minute interval is PN(1)(6) = 66e−6/6! =
0.161.

(c) The probability of exactly three queries arriving in a one-half minute interval is PN(0.5)(3) =
33e−3/3! = 0.224.

Problem 10.5.3 Solution
Since there is always a backlog an the service times are iid exponential random variables, The time
between service completions are a sequence of iid exponential random variables. that is, the service
completions are a Poisson process. Since the expected service time is 30 minutes, the rate of the
Poisson process is λ = 1/30 per minute. Since t hours equals 60t minutes, the expected number
serviced is λ(60t) or 2t. Moreover, the number serviced in the first t hours has the Poisson PMF

PN(t) (n) =

{
(2t)ne−2t

n! n = 0, 1, 2, . . .
0 otherwise

(1)

Problem 10.5.4 Solution
Since D(t) is a Poisson process with rate 0.1 drops/day, the random variable D(t) is a Poisson
random variable with parameter α = 0.1t. The PMF of D(t). the number of drops after t days, is

PD(t) (d) =
{

(0.1t)de−0.1t/d! d = 0, 1, 2, . . .
0 otherwise

(1)

Problem 10.5.5 Solution
Note that it matters whether t ≥ 2 minutes. If t ≤ 2, then any customers that have arrived must
still be in service. Since a Poisson number of arrivals occur during (0, t],

PN(t) (n) =
{

(λt)ne−λt/n! n = 0, 1, 2, . . .
0 otherwise

(0 ≤ t ≤ 2) (1)

For t ≥ 2, the customers in service are precisely those customers that arrived in the interval (t−2, t].
The number of such customers has a Poisson PMF with mean λ[t − (t − 2)] = 2λ. The resulting
PMF of N(t) is

PN(t) (n) =
{

(2λ)ne−2λ/n! n = 0, 1, 2, . . .
0 otherwise

(t ≥ 2) (2)
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Problem 10.5.6 Solution
The time T between queries are independent exponential random variables with PDF

fT (t) =
{

(1/8)e−t/8 t ≥ 0
0 otherwise

(1)

From the PDF, we can calculate for t > 0,

P [T ≥ t] =
∫ t

0
fT

(
t′
)

dt′ = e−t/8 (2)

Using this formula, each question can be easily answered.

(a) P [T ≥ 4] = e−4/8 ≈ 0.951.

(b)

P [T ≥ 13|T ≥ 5] =
P [T ≥ 13, T ≥ 5]

P [T ≥ 5]
(3)

=
P [T ≥ 13]
P [T ≥ 5]

=
e−13/8

e−5/8
= e−1 ≈ 0.368 (4)

(c) Although the time betwen queries are independent exponential random variables, N(t) is not
exactly a Poisson random process because the first query occurs at time t = 0. Recall that
in a Poisson process, the first arrival occurs some time after t = 0. However N(t) − 1 is a
Poisson process of rate 8. Hence, for n = 0, 1, 2, . . .,

P [N(t)− 1 = n] = (t/8)ne−t/8/n! (5)

Thus, for n = 1, 2, . . ., the PMF of N(t) is

PN(t) (n) = P [N(t)− 1 = n− 1] = (t/8)n−1e−t/8/(n− 1)! (6)

The complete expression of the PMF of N(t) is

PN(t) (n) =
{

(t/8)n−1e−t/8/(n− 1)! n = 1, 2, . . .
0 otherwise

(7)

Problem 10.5.7 Solution
This proof is just a simplified version of the proof given for Theorem 10.3. The first arrival occurs
at time X1 > x ≥ 0 iff there are no arrivals in the interval (0, x]. Hence, for x ≥ 0,

P [X1 > x] = P [N(x) = 0] = (λx)0e−λx/0! = e−λx (1)

Since P [X1 ≤ x] = 0 for x < 0, the CDF of X1 is the exponential CDF

FX1 (x) =
{

0 x < 0
1− e−λx x ≥ 0

(2)
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