
ECE 5510 Fall 2009: Homework 8 Solutions

1. Y&G 10.8.1: See attached pages.

2. Y&G 10.8.3: See attached pages.

3. Y&G 10.8.4: See attached pages. Only k ≥ 0 was required for part b. It was okay to
leave it at line (9). Part d is a matter of opinion; an average of 0 degrees C would be a
bad model for some parts of the world. Also, why should different days of January have
different variance? This model has a particular variance as a function of day n, which
you’d want to see if it matched the actual variance vs. day in January.

4. Y&G 10.10.1: R1(τ) and R2(τ) and R4(τ) are valid autocorrelation functions. R3(τ) is
invalid because R3(0) = 0 is not the maximum autocorrelation (the max is at τ = 10), and
it is not symmetric about τ = 0. (True, as the Y&G solutions state, R1(τ) = δ(τ) implies
the power of the random process is infinite since R1(0) = ∞, which is not physically
realizable. However, R1(τ) approximates the autocorrelation function for thermal noise,
a random process that does exist and we use all the time as engineers. Since this is an
engineering class, my answer is correct.)

5. Y&G 10.10.3: See attached pages.

6. (a) We know the means are zero, and that for τ = 1, the covariance is 2 and the
variances are 4 (CX(0) is the variance). You could have written the mean vector as
µX = [0, 0]T and covariance matrix CX = [4, 2; 2, 4] and then the joint pdf for vector
X = [X(t),X(t+1)]T could be written using the multivariate Gaussian pdf given in
Definition 5.17 on page 229 of Y&G. Alternatively, you could have found that the
correlation coefficient ρ = 2/

√

(4)(4) = 1/2, and used Definition 4.17 on page 191
of Y&G:
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(b) Now for τ = 3, the covariance is 0. Thus X(t) and X(t + 3) are independent, and
we find the joint pdf by multiplying two marginal pdfs together:
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In terms of matrices, W = AX where A is the lower triangular matrix

A =

⎡
⎢⎢⎢⎣

1
1 1
...

. . .
1 · · · · · · 1

⎤
⎥⎥⎥⎦ . (4)

Since E[W] = AE[X] = 0, it folows from Theorem 5.16 that

fW (w) =
1

|det (A)|fX

(
A−1w

)
. (5)

Since A is a lower triangular matrix, det(A) = 1, the product of its diagonal entries. In addition,
reflecting the fact that each Xn = Wn −Wn−1,

A−1 =

⎡
⎢⎢⎢⎢⎢⎣

1
−1 1
0 −1 1
...

. . . . . . . . .
0 · · · 0 −1 1

⎤
⎥⎥⎥⎥⎥⎦ and A−1W =

⎡
⎢⎢⎢⎢⎢⎣

W1

W2 −W1

W3 −W2
...

Wk −Wk−1

⎤
⎥⎥⎥⎥⎥⎦ . (6)

Combining these facts with the observation that fX(x) =
∏k

n=1 fXn(xn), we can write

fW (w) = fX

(
A−1w

)
=

k∏
n=1

fXn (wn − wn−1) , (7)

which completes the missing steps in the proof of Theorem 10.8.

Problem 10.8.1 Solution
The discrete time autocovariance function is

CX [m, k] = E [(Xm − µX)(Xm+k − µX)] (1)

for k = 0, CX [m, 0] = Var[Xm] = σ2
X . For k �= 0, Xm and Xm+k are independent so that

CX [m, k] = E [(Xm − µX)] E [(Xm+k − µX)] = 0 (2)

Thus the autocovariance of Xn is

CX [m, k] =
{

σ2
X k = 0

0 k �= 0
(3)

Problem 10.8.2 Solution
Recall that X(t) = t−W where E[W ] = 1 and E[W 2] = 2.

(a) The mean is µX(t) = E[t−W ] = t− E[W ] = t− 1.

(b) The autocovariance is

CX(t, τ) = E [X(t)X(t + τ)]− µX(t)µX(t + τ) (1)
= E [(t−W )(t + τ −W )]− (t− 1)(t + τ − 1) (2)

= t(t + τ)− E [(2t + τ)W ] + E
[
W 2
]− t(t + τ) + 2t + τ − 1 (3)

= −(2t + τ)E [W ] + 2 + 2t + τ − 1 (4)
= 1 (5)
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Problem 10.8.3 Solution
In this problem, the daily temperature process results from

Cn = 16
[
1− cos

2πn

365

]
+ 4Xn (1)

where Xn is an iid random sequence of N [0, 1] random variables. The hardest part of this problem
is distinguishing between the process Cn and the covariance function CC [k].

(a) The expected value of the process is

E [Cn] = 16E
[
1− cos

2πn

365

]
+ 4E [Xn] = 16

[
1− cos

2πn

365

]
(2)

(b) The autocovariance of Cn is

CC [m, k] = E

[(
Cm − 16

[
1− cos

2πm

365

])(
Cm+k − 16

[
1− cos

2π(m + k)
365

])]
(3)

= 16E [XmXm+k] =
{

16 k = 0
0 otherwise

(4)

(c) A model of this type may be able to capture the mean and variance of the daily temperature.
However, one reason this model is overly simple is because day to day temperatures are
uncorrelated. A more realistic model might incorporate the effects of “heat waves” or “cold
spells” through correlated daily temperatures.

Problem 10.8.4 Solution
By repeated application of the recursion Cn = Cn−1/2 + 4Xn, we obtain

Cn =
Cn−2

4
+ 4
[
Xn−1

2
+ Xn

]
(1)

=
Cn−3

8
+ 4
[
Xn−2

4
+

Xn−1

2
+ Xn

]
(2)

... (3)

=
C0

2n
+ 4
[

X1

2n−1
+

X2

2n−2
+ · · ·+ Xn

]
=

C0

2n
+ 4

n∑
i=1

Xi

2n−i
(4)

(a) Since C0, X1, X2, . . . all have zero mean,

E [Cn] =
E [C0]

2n
+ 4

n∑
i=1

E [Xi]
2n−i

= 0 (5)

(b) The autocovariance is

CC [m, k] = E

⎡
⎣(C0

2n
+ 4

n∑
i=1

Xi

2n−i

)⎛⎝ C0

2m + k
+ 4

m+k∑
j=1

Xj

2m+k−j

⎞
⎠
⎤
⎦ (6)
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Since C0, X1, X2, . . . are independent (and zero mean), E[C0Xi] = 0. This implies

CC [m, k] =
E
[
C2

0

]
22m+k

+ 16
m∑

i=1

m+k∑
j=1

E [XiXj ]
2m−i2m+k−j

(7)

For i �= j, E[XiXj ] = 0 so that only the i = j terms make any contribution to the double
sum. However, at this point, we must consider the cases k ≥ 0 and k < 0 separately. Since
each Xi has variance 1, the autocovariance for k ≥ 0 is

CC [m, k] =
1

22m+k
+ 16

m∑
i=1

1
22m+k−2i

(8)

=
1

22m+k
+

16
2k

m∑
i=1

(1/4)m−i (9)

=
1

22m+k
+

16
2k

1− (1/4)m

3/4
(10)

For k < 0, we can write

CC [m, k] =
E
[
C2

0

]
22m+k

+ 16
m∑

i=1

m+k∑
j=1

E [XiXj ]
2m−i2m+k−j

(11)

=
1

22m+k
+ 16

m+k∑
i=1

1
22m+k−2i

(12)

=
1

22m+k
+

16
2−k

m+k∑
i=1

(1/4)m+k−i (13)

=
1

22m+k
+

16
2k

1− (1/4)m+k

3/4
(14)

A general expression that’s valid for all m and k is

CC [m, k] =
1

22m+k
+

16
2|k|

1− (1/4)min(m,m+k)

3/4
(15)

(c) Since E[Ci] = 0 for all i, our model has a mean daily temperature of zero degrees Celsius for
the entire year. This is not a reasonable model for a year.

(d) For the month of January, a mean temperature of zero degrees Celsius seems quite reasonable.
we can calculate the variance of Cn by evaluating the covariance at n = m. This yields

Var[Cn] =
1
4n

+
16
4n

4(4n − 1)
3

(16)

Note that the variance is upper bounded by

Var[Cn] ≤ 64/3 (17)

Hence the daily temperature has a standard deviation of 8/
√

3 ≈ 4.6 degrees. Without actual
evidence of daily temperatures in January, this model is more difficult to discredit.
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Problem 10.10.1 Solution
The autocorrelation function RX(τ) = δ(τ) is mathematically valid in the sense that it meets the
conditions required in Theorem 10.12. That is,

RX(τ) = δ(τ) ≥ 0 (1)
RX(τ) = δ(τ) = δ(−τ) = RX(−τ) (2)
RX(τ) ≤ RX(0) = δ(0) (3)

However, for a process X(t) with the autocorrelation RX(τ) = δ(τ), Definition 10.16 says that the
average power of the process is

E
[
X2(t)

]
= RX(0) = δ(0) =∞ (4)

Processes with infinite average power cannot exist in practice.

Problem 10.10.2 Solution
Since Y (t) = A + X(t), the mean of Y (t) is

E [Y (t)] = E [A] + E [X(t)] = E [A] + µX (1)

The autocorrelation of Y (t) is

RY (t, τ) = E [(A + X(t)) (A + X(t + τ))] (2)

= E
[
A2
]
+ E [A] E [X(t)] + AE [X(t + τ)] + E [X(t)X(t + τ)] (3)

= E
[
A2
]
+ 2E [A] µX + RX(τ) (4)

We see that neither E[Y (t)] nor RY (t, τ) depend on t. Thus Y (t) is a wide sense stationary process.

Problem 10.10.3 Solution
In this problem, we find the autocorrelation RW (t, τ) when

W (t) = X cos 2πf0t + Y sin 2πf0t, (1)

and X and Y are uncorrelated random variables with E[X] = E[Y ] = 0.
We start by writing

RW (t, τ) = E [W (t)W (t + τ)] (2)
= E [(X cos 2πf0t + Y sin 2πf0t) (X cos 2πf0(t + τ) + Y sin 2πf0(t + τ))] . (3)

Since X and Y are uncorrelated, E[XY ] = E[X]E[Y ] = 0. Thus, when we expand E[W (t)W (t + τ)]
and take the expectation, all of the XY cross terms will be zero. This implies

RW (t, τ) = E
[
X2
]
cos 2πf0t cos 2πf0(t + τ) + E

[
Y 2
]
sin 2πf0t sin 2πf0(t + τ) (4)

Since E[X] = E[Y ] = 0,

E
[
X2
]

= Var[X]− (E [X])2 = σ2, E
[
Y 2
]

= Var[Y ]− (E [Y ])2 = σ2. (5)

In addition, from Math Fact B.2, we use the formulas

cos A cos B =
1
2
[
cos(A−B) + cos(A + B)

]
(6)

sin A sin B =
1
2
[
cos(A−B)− cos(A + B)

]
(7)
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to write

RW (t, τ) =
σ2

2
(cos 2πf0τ + cos 2πf0(2t + τ)) +

σ2

2
(cos 2πf0τ − cos 2πf0(2t + τ)) (8)

= σ2 cos 2πf0τ (9)

Thus RW (t, τ) = RW (τ). Since

E [W (t)] = E [X] cos 2πf0t + E [Y ] sin 2πf0t = 0, (10)

we can conclude that W (t) is a wide sense stationary process. However, we note that if E[X2] �=
E[Y 2], then the cos 2πf0(2t + τ) terms in RW (t, τ) would not cancel and W (t) would not be wide
sense stationary.

Problem 10.10.4 Solution

(a) In the problem statement, we are told that X(t) has average power equal to 1. By Defini-
tion 10.16, the average power of X(t) is E[X2(t)] = 1.

(b) Since Θ has a uniform PDF over [0, 2π],

fΘ (θ) =
{

1/(2π) 0 ≤ θ ≤ 2π
0 otherwise

(1)

The expected value of the random phase cosine is

E [cos(2πfct + Θ)] =
∫ ∞

−∞
cos(2πfct + θ)fΘ (θ) dθ (2)

=
∫ 2π

0
cos(2πfct + θ)

1
2π

dθ (3)

=
1
2π

sin(2πfct + θ)|2π
0 (4)

=
1
2π

(sin(2πfct + 2π)− sin(2πfct)) = 0 (5)

(c) Since X(t) and Θ are independent,

E [Y (t)] = E [X(t) cos(2πfct + Θ)] = E [X(t)] E [cos(2πfct + Θ)] = 0 (6)

Note that the mean of Y (t) is zero no matter what the mean of X(t) since the random phase
cosine has zero mean.

(d) Independence of X(t) and Θ results in the average power of Y (t) being

E
[
Y 2(t)

]
= E

[
X2(t) cos2(2πfct + Θ)

]
(7)

= E
[
X2(t)

]
E
[
cos2(2πfct + Θ)

]
(8)

= E
[
cos2(2πfct + Θ)

]
(9)

Note that we have used the fact from part (a) that X(t) has unity average power. To finish
the problem, we use the trigonometric identity cos2 φ = (1 + cos 2φ)/2. This yields

E
[
Y 2(t)

]
= E

[
1
2

(1 + cos(2π(2fc)t + Θ))
]

= 1/2 (10)

Note that E[cos(2π(2fc)t + Θ)] = 0 by the argument given in part (b) with 2fc replacing fc.
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