Intro 0000000000	Localization	Sensing	Privacy 0000000000	Conclusion
	_	_	_	
	RF is the new LIGHT	Sensing, Local and Privacy	lization,	

Neal Patwari

프 > > 프 > Washington University in St. Louis

 $\langle \Box \rangle \langle \Box \rangle$

Neal Patwari

Localization	Sensing oooooooooooooo	Privacy 0000000000	Conclusion

Outline

- 2 Localization
- 3 Sensing
- 4 Privacy
- 5 Conclusion

Washington University in St. Louis

Neal Patwari

Intro ●000000000	Localization	Sensing oooooooooooooo	Privacy 00000000000	Conclusion
Outline				

1 Intro

2 Localization

3 Sensing

4 Privacy

5 Conclusion

Washington University in St

Neal Patwari

Intro o●ooooooooo

Localization 0000000000000000 Sensing

Privacy 000000000000 Conclusion

RF is the new Light

- Don't turn out the lights
- Analogy: Mental model
- Larger wavelength, penetrate nonconductors

Generate new ideas

Washington University in St. Louis

A B F A B F

Neal Patwari

Intro 000000000

Localization 000000000000000 Sensing 00000000000000 Privacy 000000000000 Conclusion

Light Analogy: Astronomy

Giovanni Corrado Leone, https://www.backpacker.com/survival/how-to-navigate-by-the-stars

- Home of Galileo
- Stars, planets: light sources

- Orientation
- Tracking of planets
- Measurement of angle-of-arrival

Washington University in St. Louis

Neal Patwari

Intro 000●000000	Localization	Sensing oooooooooooooo	Privacy 0000000000	Conclusion

Topics of Talk

Localization

- 1 Device-free localization
- 2 Source localization
- 3 Sensing
- Privacy
 - 4 Radio window attack
 - 5 Remote transceiver attack

・ロト・白ト・ヨト・ヨー うへぐ

Washington University in St. Louis

Neal Patwari

RF Attacks on Privacy

- Using RF to monitor activities, locations, health
- Privacy issues arise
- No cover for RF
- Every IoT / smart device has it

Washington University in St. Louis

イロト イヨト イヨト イヨト

Neal Patwari

RF Sensors Measure the Channel

Each new low-cost measurement capability widens the RF sensing application space

- Received signal strength (RSS)
- Ultra-wideband impulse response (UWB-IR)
- Channel state information (CSI)

Image: A matrix

Sensing

Privacy 00000000000000 Conclusion

Advantage of CSI, UWB-IR

RSS "course-grained", CSI "fine-grained": not exactly...

- CSI: high dimensionality is space, frequency diversity
- Both: affected by multipath fading
- Both: Quantized (CSI: 16-20 bits, RSS: 8 bits)
- When RSS has 16 bits: can have identical performance

² Anh Luong et al., "RSSI step size: 1 dB is not enough!," ACM HotWireless 2016.

³ Jie Wang et al., "Device-free wireless sensing: Challenges, opportunities, and applications." *IEEE Network* 32(2), 2018.

Neal Patwari

Washington University in St. Louis

Localization 000000000000000 5ensing 00000000000000 Privacy 00000000000 Conclusion

Narrowband RF Sensor

Sitara: Low-cost (\$25) narrowband software-defind RF sensor

- <1 GHz transceiver (TI CC1200)</p>
- µC: Cortex M4, 62 MHz (nRF52840)
- Backhaul: BLE 5
- Clock: Fine-grained control (VCTCXO)
- Open hw & sw: https://github. com/SPAN-WashU/Sitara

Image: A matrix

Neal Patwari

Intro 0000000●0	Localization	Sensing 0000000000000	Privacy 00000000000	Conclusion
Sitara Ar	nlications			

Sitara Applications

- RSS very accurately (0.01 dB error)
- Frequency offset
- Frequency synchronization
- Crowdsourcing device
- Base for UWB (via DW1000 cape)

Intro ○○○○○○○○●	Localization	Sensing oooooooooooooo	Privacy 00000000000	Conclusion
Taulas of	Τ_Π.			

Topics of Talk

Localization

- 1 Device-free localization
- 2 Source localization
- 3 Sensing
- Privacy
 - 4 Radio window attack
 - 5 Remote transceiver attack

・ロト・白ト・ヨト・ヨー うへぐ

Washington University in St. Louis

Neal Patwari

Localization ●ooooooooooooooo	Sensing 0000000000000	Privacy 00000000000	Conclusion

Outline

1 Intro

2 Localization

3 Sensing

4 Privacy

5 Conclusion

<ロ> < 回> < 回> < 回> < 回> < 回> < 回</p>

ashington University in St. Louis

Neal Patwari

Intro 0000000000 Localization

Sensing

Privacy 00000000000 Conclusion

RF is the new Light: Changes

Track based on changes in measured scattered light (RF)

Light

・ロト・日本・モート ヨー うへぐ

Washington University in St. Louis

Neal Patwari

- Radio channel measurements change most due to people in environment near link
- One person / object affects multiple links
- Mesh network of *N* nodes $\rightarrow O(N^2)$ RSS measurements
- Find: Count, locations of people

Neal Patwari

Radio Tomographic Imaging

We first explored radio tomographic imaging (RTI) for DFL¹:

- Measure y_l on link l: attenuation vs. empty area, variance, histogram difference
- Presume it is linear combination of presence x_p in pixels p close to link line

$$\mathbf{y} = W\mathbf{x} + \mathbf{n}$$

- $W = [[w_{l,p}]]_{l,p}$ = weight of pixel p in link l
- Pick regularization method
- Solve inverse problem $\hat{\mathbf{x}} = \Pi \mathbf{y}$

Pros: Fast, real-time algorithm; scales with # people

Neal Patwari

¹ N. Patwari and P. Agrawal, "Effects of Correlated Shadowing: Connectivity, Localization, and RF Tomography", IPSN 2008. ← □ → ← (□) → (□) → (

Challenges of Radio Tomographic Imaging

Two identical links. A person walks, crossing at time 52. Link 1 has high attenuation for one sample, link 2 has high variance and an increase in average RSS over several samples.

- Area where person impacts link varies
- The ±∆ of RSS impact varies
- Measure multiple frequency ch. / link²
- 2 Estimate params. of model for each link³

³O. Kaltiokallio, R. Jäntti, N. Patwari, "An adaptive radio tomographic imaging system", IEEE TVT, 2017. 🛛 🚊 🛛 🔗

Neal Patwari

Washington University in St. Louis

² O. Kaltiokallio, M. Bocca, and N. Patwari, "Follow @grandma: long-term device-free localization for residential monitoring", *SenseApp 2012.*

Localization

RSS-DFL: Survey of Current Capabilities

Number of targets: 2

- Error: 7cm 2m (5-35 nodes in 15-150 m²)
- Multiple people, building structure, motion vs. change, 2D & 3D, in & outdoors⁴
- Algs: RTI, ML, statistical inversion

⁴N. Patwari, "One decade of sensorless sensing: Wireless networks as human context sensors", IEEE Signal Processing and Wireless Communications (SPAWC) 2015, Plenary Talk Slides < 🗆 🕨 🗸 🗇 🕨

Neal Patwari

Washington University in St. Louis

Intro 0000000000 Localization

Sensing

Privacy 000000000000

A 3 3

Washington University in St. Louis

Conclusion

Device-free Localization Products

- Xandem, xandem.com (I am affiliated)
- Aura Home
- Origin Wireless
- RSS-based security system / home automation sensor
- Next: embedded in switches, outlets

Neal Patwari

	Localization	Sensing 0000000000000	Privacy 00000000000	Conclusion
DFL: Ope	en Topics			

- CSI+ML dominates DFL research
- Training gets stale quickly: 2× Error every 6 changes⁵
- Need updates, perhaps from located sources
- Adaptive statistical models for CSI

Neal Patwari

Localization

RF is the new Light: Source Localization

Locate sources of light (RF)

Otto Phokus, flickr.com/photos/jbmac/4737231422

→ ∃ → Washington University in St. Louis

• E >

Neal Patwari

Intro Localization Sensing Privacy Conclusion

Powder: Open Outdoor SDR Platform

https://powderwireless.net

- In Salt Lake City Utah
- Currently on 8 rooftops, 8 endpoints
- NI X310 and B210s, compute nodes

Image: A matrix

- Plan to deploy over 14 km²
- Deploy arbitrary s/w: srsLTE, OAI, GNU Radio

Neal Patwari

Powder: Localization Research

- MWW2019 tutorial, incl. RSS localization
- gitlab.flux.utah.edu/powderrenewpublic
- Future: Time synch via SyncE & GPS
- Massive MIMO from Skylark Wireless

< 31

Neal Patwari

Motivation: Source Localization

- Consider dynamic spectrum access for consumers
- Requires collaborative sensing & localization
- Privacy, bandwidth concerns would likely preclude saving, transfer of raw signal samples from consumer devices to cloud
- Thus RSS, Doppler, AOA remain

イロト イポト イヨト イヨト

Neal Patwari

Intro Localization Sensing Privacy Conclusion

Simultaneous Source Localization

- RSS meast's may include multiple TXs
- Problem: Estimate number, location of TXs
- Our solution: SPLOT⁶
- Outperforms SotA quasi-EM method

^bM. Khaledi, et al. "Simultaneous power-based localization of transmitters for crowdsourced spectrum monitoring" MobiCom 2017.

Neal Patwari

Washington University in St. Louis

PocketSDR: Large Participant Studies

Goal: Enable large (100s) participant research Motivation: Study collaborative sensing at high density w/ actual mobility

- RF spectrum $\overset{CC1200}{\leftrightarrow}$ Sitara $\overset{BLE}{\leftrightarrow}$ Phone $\overset{4G}{\leftrightarrow}$ Server
- Can exchange 52 kSps over BLE 5
- Participant recharges over µUSB
- Otherwise, pocket and forget it

⁶ P. Smith, et al. "Sitara: spectrum measurement goes mobile through crowd-sourcing" IEEE MASS 2019. 📑 🔗 🤉

Neal Patwari

Localization	Sensing ●○○○○○○○○○○○○	Privacy ooooooooooo	Conclusion

Outline

2 Localization

5 Conclusion

Neal Patwari

Washington University in St. Louis

Intro 0000000000 Localization

Privacy 00000000000 Conclusion

Light: Breathing Localization

We are familiar with how to use light to monitor breathing

Medical "gold standard"

Neal Patwari

Intro Localization Sensing Privacy Conclusion

RF-based Breathing Rate Estimation

RX sees a phasor sum of affected (black) and not affected (red) paths. A phase change to affected paths changes the RSS (squared magnitude of the sum).

- Related: radar reflectometry for vitals monitoring
- Observation: Breathing *also* changes RSS on some links

イロト イヨト イヨト イヨト

Neal Patwari

Intro Localization Sensing Privacy Conclusion occorrections Manifestry Privacy Conclusion oc

RF-based Breathing Monitoring: Problem

- Typical RSS peak-to-peak change of 0.1-0.2 dB
- Quantization step size: 1 dB
- Many links will not observe breathing-induced changes

-

Washington University in St. Louis

Several solutions

Solution 1: Measure Lots of Links

Patient breathing at 0.25 Hz: (Left) Avg. PSD over all links. (Right) RSS vs. time (30 sec duration) for five best links.

RSS changes in some

- This setup: 20 sensors around patient bed ⁷
- Estimator: Peak of avg. PSD (MLE) has 0.4 bpm error

⁷ N. Patwari, et al. "Monitoring Breathing via Signal Strength in Wireless Networks", *IEEE Trans. Mobile Computing*, 2014.

Neal Patwari

Washington University in St. Louis

	Localization	Sensing oooooooooooooo	Privacy 00000000000	Conclusion
Breathing	Localization			

- Amplitude at breathing rate \propto link person proximity
- Breathing Tomography: Locate breathing w/ 2 m avg. error⁸

Neal Patwari

Washington University in St. Louis

⁸N. Patwari, et al. "Breathfinding: A Wireless Network that Monitors and Locates Breathing in a Home", *IEEE J.* Sel. Topics in Signal Processing, 2013.

	Localization	Sensing ○○○○○●○○○○○○○	Privacy 00000000000	Conclusion
Other Sol	utions			

- Use frequency or spatial diversity
- Use other devices without the (same) quantization problem: CSI, UWB-IR, Sitara. (We compared on 20 patients⁹)
- Add *helpful interference* to RSS

⁹P. Hillyard et al., "Comparing respiratory monitoring performance using commercial wireless devices," ACM Mobicom 2018.

Neal Patwari

Washington University in St. Louis

Intro 0000000000 Localization

Sensing 000000000000000

Privacy 00000000000 Conclusion

Breathing Monitoring: Add Noise

- Solution 3: transmit interference from 3rd device¹⁰
- Setup: TX 64 square QAM signal, known power
- Increases probability RSS takes two quantized values

¹⁰A. S. Abrar, N. Patwari, A. Baset, S. K. Kasera, "Bounding the Ability to Monitor Breathing via Received Signal Strength", in preparation.

Neal Patwari

Washington University in St. Louis

Sensing

Add Noise = Add Robustness

・ロト ・ 日 ・ ・ ヨ ・

(4) 王 Washington University in St. Louis

æ

Neal Patwari

Intro Localization Sensing Privacy Conclusion

Exp Results: Error vs. Interference Power

Interferer power is increased each 180 sec (---). At high power, abs. err. is reduced, and has a minimum. (RIght) Zoomed in quantized RSS (red) shows increased probability of being = -40 dBm once per period.

Neal Patwari

Audio Vibration Monitoring

- Wikipedia: Laser Doppler Vibrometer
- Used by spies to eavesdrop sound vibrations on windows

RF would go through walls

Neal Patwari

Intro 0000000000 Localization 000000000000000 Sensing

Privacy 0000000000000 Conclusion

Audio Vibration Monitoring

WiFi CSI can measure audio¹¹

CSI not needed; narrowband RSS contains audio vibrations

Neal Patwari

Washington University in St. Louis

^{11 &}quot;Teng Wei, et al. "Acoustic eavesdropping through wireless vibrometry." MobiCom 2015. + E + + E + E - O Q O

Audio Vibration Monitoring

- A is static (unaffected) signal
- B is signal affected by vibration
- Vibration ampl. $\Delta z \rightarrow$ phase change $\delta \rightarrow$ Power change
- In dB, change $\approx \frac{20\pi}{\ln 10} \frac{\Delta z}{\lambda}$
- $\Delta z = 0.2$ mm and 900 MHz results in 0.017 dB power change

 But, Δz decreases as audio freq increases

Neal Patwari

 Intro
 Localization
 Sensing
 Privacy
 Concord

 0000000000
 00000000000
 0000000000
 0000000000
 0000000000

Audio Vibration Monitoring Results

- Google Home plays mp4 tracks
- Left: sweep; Right: Harry Potter theme
- 1 Sitara TX on table, 1 RX elsewhere
- Audio below ≈ 200 Hz is well observed

< <p>O > < <p>O >

Neal Patwari

Localization	Sensing ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	Privacy ●੦੦੦੦੦੦੦੦੦	Conclusion

Outline

1 Intro

2 Localization

3 Sensing

4 Privacy

5 Conclusion

・ロト・西ト・山下・山下・ 日・ うへぐ

Neal Patwari

 Intro
 Localization
 Sensing
 Privacy
 Conclusion

 000000000
 00000000000
 0●000000000
 00

Security of IoT Devices

Mirai exploited 600k IoT devices (webcams, routers) ¹²
 IoT device hacking: prevalent, growing problem

Neal Patwari

^{12&}quot;Inside the infamous Mirai IoT Botnet: A Retrospective Analysis", Cloudfare,::14 Dec:2017(🗄) + + 🗄) 📃 🔊 🤉 🖓

Intro Localization Sensing Privacy Conclusion

Breathing Monitoring: Privacy Issue

"Amazon's Echo Spot is a sneaky way to get a camera into your bedroom", The Verge, 28 Sep 2017.

- Hesitation to place a video camera, mic in private spaces
- People know what a hacker might access from video
- Most don't know a hacker could access from a transceiver: your vital signs, activity, even audio
- Our focus: attack to estimate frequency and amplitude of a sinusoid

Washington University in St. Louis

Assume a hacker can run s/w on transceivers in your home, to TX and access RSS y[k]:

$$\boldsymbol{y}[\boldsymbol{k}] = \boldsymbol{Q} \left\{ \boldsymbol{A}\cos(\omega \boldsymbol{k}/\boldsymbol{f}_{\boldsymbol{s}} + \boldsymbol{\phi}) + \boldsymbol{B} + \boldsymbol{\nu}[\boldsymbol{k}] \right\},\$$

quantizer Q{}, amplitude A, phase ϕ , time k, and offset B, in noise $\nu[k]$, at max sample rate f_s possible from transceiver. No assumed computation, alg limits.

What is this attacker's ability to est. breathing rate?

Attack on Breathing Privacy: Our Approach

- Cramér-Rao lower bound (CRLB) on variance of unbiased est. of rate ω
- Assume noise is iid $\mathcal{N}(\mathbf{0}, \sigma^2)$
- Offset from quantization threshold *B* is uniform
- Bound: fcn. of Δ (step size), f_s , σ^{13}
- Assume best case for attacker: optimal interference power

Neal Patwari

Washington University in St. Louis

¹³A. S. Abrar, N. Patwari, A. Baset, S. K. Kasera, "Bounding the Ability to Monitor Breathing via Received Signal Strength", (in preparation).

Implications of Our Approach

- CRLB: std. dev. (û) only guaranteed high when RSS step size is high (6 dB) & RSS update frequency is low (2 Hz)
- Bad news for transceivers for mobile (fading) channels (e.g., power control)
- Future work: Adaptive RSS schemes in h/w that reduce rate, accuracy in static channels

• E >

Neal Patwari

Radio Window Attack: Introduction

Philip Johnson Glass House, https://youtu.be/eOzimeZDFKo

- If you live in a glass house...
- You understand what light bulbs do to your privacy
- Non-metal walls are "glass" to radio waves
- Wireless device = RF "bulbs"

Wash

Image: Image:

RF is the new Light

Neal Patwari

Washington University in St. Louis

Radio Window Attack Model

Wireless devices where people's locations, activities should not be revealed (embassy, base, corporate office). Attacker:

- can't enter area
- can place receivers outside
- doesn't transmit (avoid detection)
- can't decode/decrypt data

イロト イポト イヨト イヨト

- can measure channel when devices TX
- may or may not know device locations

Neal Patwari

Intro Localization Sensing October Conclusion

Radio Window Attack Analysis

Example: Lower bound on 3σ covariance ellipse (- - -) for localization of person at three actual locations • with attacker's receivers **–**.

- How well can the attacker know a person's location?
- Measurements are made at different times
- Attacker would track person using motion model
- Approach: Find lower bound on RMSE (van Trees bound)¹⁴

O. Kaltiokallio, A. S. Abrar, N. Patwari, "RMSE bounds for RSS-based device-free localization", (in

preparation).

Neal Patwari

Washington University in St. Louis

Radio Window Attack Idea

Experiment: WiFi AP in building (**■**), two WiFi Intel NUCs (**■**) outside each measure RSS on 3 antennas.

- Fool an attacker! Change TX power
- Either (a) randomly uncorrelated(b) fake line crossing
- Problem: Multiple (6) RX antennas observe mostly identical power change
- Attacker can remove median RSS change

イロト イヨト イヨト イヨト

Neal Patwari

Radio Window Attack Current Work

confused by MIMO transmitter with M > P.

- Assume legit AP has more antennas than attacker. Randomly alter precoding matrix to confuse the attacker
- 2 Pseudorandom frequency hopping across channels to avoid eavesdropper

3 Prototype AP which resists a radio window attack

• E >

Neal Patwari

Localization	Sensing	Privacy	Conclusion
0000000000000	0000000000000	00000000000	●○

Outline

1 Intro

- 2 Localization
- 3 Sensing

4 Privacy

5 Conclusion

ashington University in St. Louis

Neal Patwari

	Localization	Sensing 0000000000000	Privacy 00000000000	Conclusion ○●	
Conclusion					

- Transceiver interface: the light bulb / sensor of RF
- New transceivers provide new capabilities
- Sensing capabilities open up new attacks, we can quantify and address
- Localization solutions will use both RF and light
- We can gain intuition in RF, and imagine future technologies, by analogy to light

Neal Patwari