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Motivation: Interference Prediction 
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Interference Prediction with Sharing
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Fixed cellular pattern for frequency reuse      

• Goal of interference prediction is to ensure that for all requested links:

SINR, or Signal / (Interference + Noise) > Threshold

• Current cell deployment sharing solution:

• Static and complex design for once

• Issue: what if the design needs update every day?
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Communication degraded by co-channel interference 
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Challenge: Dynamic Spectrum Access (DSA)

Challenges of Dynamic Spectrum Access (DSA) in mobile networks:

• Multiple co-channel links and their interferences are temporally and geographically dynamic.

• The channel losses will change as users move and as environment changes.

Goal: Accurate, efficient, and continuous predictions of the changing channel losses.
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Interference prediction challenge in a 
DSA environment
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Current Methods for Channel Estimation 

1. Z. Yun et al. “Ray tracing for radio propagation modeling: Principles and applications,” IEEE access, vol. 3, pp. 1089–1100, 2015.
2. M. Hata. “Empirical formula for propagation loss in land mobile radio services,” IEEE transactions on Vehicular Technology, vol. 29, no. 3, pp. 317–325, 1980.
3. D. Eppink et al. “TIREM/SEM handbook,” Defense Technical Information Center, 1994.
4. Y. Zhang et al. “Path loss prediction based on machine learning: Principle, method, and data expansion,” Applied Sciences, vol. 9, no. 9, p. 1908, 2019.
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Physics-based 
methods, e.g., Ray 

Tracing1

Empirical models, 
e.g., Okumura-Hata2

Hybrid empirical / 
physical models, e.g. 

TIREM3 

Goal

ML 
models4

Goal: Low computational complexity and modeling error with physical explainability.



The Proposed CELF Model
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The Proposed Model: Modeling Rationale

• Channel Estimation via Loss Field (CELF) uses any existing channel model as the base model.

• For most channel models, model errors are correlated across space because of the building and land 
use in the area1.

• CELF learns a spatially correlated loss field from measurements.

• CELF predicts additional channel loss via the learned loss field.

Building
Link a

Link b

Link a and Link b have correlated model error.

1. P. Agrawal and N. Patwari, “Correlated link shadow fading in multi-hop wireless networks,” 
IEEE Transactions on Wireless Communications, vol. 8, no. 8, pp. 4024–4036, 2009. 
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The Proposed Model: Overview
Base Channel Model 

(e.g., TIREM, Path 
Loss Exponent)

Channel 
Measurements 
from the area

Loss 
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Additional 
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Improved 
Channel 
Estimate

The proposed Model: Loss Field Learning & Prediction1

Loss Field 
Estimate

1. N. Patwari, “Wireless Experimental Testbeds are an Exercise in Spectrum Sharing,” seminar talk, Nov 2023.
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The Proposed Model: Overview

Advantages of the proposed model in comparison to current methods:  
• No need of site-specific terrain or building information.
• The model is explainable via propagation physics.
• Low latency of model learning and high accuracy of channel prediction.
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1. N. Patwari, “Wireless Experimental Testbeds are an Exercise in Spectrum Sharing,” seminar talk, Nov 2023.
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CELF: Spatial Loss Field Modeling
Network shadowing model

Channel Estimation via Loss Field (CELF) models the additional loss 𝒛	as a 

spatial linear function of the spatial loss field 𝒑 ∈ ℛ!×𝟏:

𝒛 = 𝑾𝒑 + 𝒏
where 𝒛 = 𝑍!, 𝑍", … , 𝑍# $ ∈ ℛ#×! is the additional loss vector, 𝑾 ∈ ℛ#×& is the weight 

matrix, and 𝒏 ∈ ℛ#×𝟏 is measurement noise.

Loss field 

link 

obstacle

Explainable loss field

The loss field 𝒑 accounts for the shadowing 

effect due to obstacles in the environment, e.g., 

buildings (for outdoor links) and furniture (for 

indoor links).
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Two Priors for Loss Field Learning

1. N. Patwari et al., “Effects of correlated shadowing: Connectivity, localization, and RF tomography,” in IPSN. 2008.
2. J. Wilson et al., “Radio tomographic imaging with wireless networks,” IEEE Transactions on Mobile Computing, vol. 9, no. 5, 2010.  

Weight matrix model2

A popular ellipse model constructs the weight to be:

𝑤() =
1
√𝑑(

/1, 	 if	valid
0, otherwise

where 𝑑( is the link distance and 𝑚 is the considered pixel.
Loss field 

link 

valid

invalidpixel 

pixel 

Shadowing loss field 𝑝 prior1
It characterizes the area of interest as an isotropic wide-sense stationary Gaussian random 
field with zero mean and the exponentially decaying covariance function:

𝐶𝒑 𝑚, 𝑛 = 𝐶𝑜𝑣{𝒑 𝑚 , 𝒑(𝑛)} =
𝜎"

𝛿
exp(−

𝑑),,
𝛿
)

where 𝑑),, is the Euclidean distance between pixel 𝑚 and 𝑛, 𝜎" is the shadowing loss variance, 
and 𝛿 is a space constant.
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Loss Field Learning and Shadowing Prediction

Bayesian linear regression
The Maximum a posterior (MAP) estimator of the loss field is: 

M𝒑 = Π𝒛
Π = 𝑪-𝑾𝑻 𝑾𝑪-𝑾𝑻 + 𝛼𝑰

/!

where 𝛼 > 0 is a regularizer.

Shadowing prediction
The shadowing loss on a new dataset 𝑇 can be predicted via:

!𝒛! = 𝑾! 	 &𝒑	



Experimental Results
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Real-world Received Power Datasets

The datasets are collected in a 2200×2100 m2 U of Utah campus area and a 17.5×15 m2 
indoor office with cubicles (--) respectively

(b) 
The outdoor 

receivers’ 
locations 

(a) 
The outdoor 
transmitters’ 

locations 

(c) 
The 44 indoor 

locations 
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Example Indoor Loss Field

Example indoor loss field learned via CELF and the 17.5×15 m2 office layout
The layout from (-2, 12) to the bottom right

• Total 1900 link measurements with 70% for training and 30% for testing.

• Higher loss can be seen near cubicle walls.

• Visualize the explainability of the loss field model.
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Example Outdoor Loss Field

Example outdoor loss field learned 

via CELF and the 2200×2100 m2 

campus building map as a reference. 
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Evaluation: Precision of CELF

Variance reductions on the test datasets via 
Okumura-Hata, three ML methods, and CELF.

CELF outperforms other methods across 

outdoor and indoor datasets in terms of 

precision improvement.

Takeaway
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Evaluation: Precision of CELF

Variance of different methods by averaging the 5 
datasets. 

• CELF significantly improves the path loss 
exponent model (base model).

• CELF shows higher precision than ML 
methods.

• The lower variance bound (dashed line) is 
fading loss that we can’t predict.

Takeaway
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Evaluation: Efficiency of CELF

Main Takeaway:

• CELF is ~3 times faster than Multilayer Perceptron (MLP-ANN) for loss field learning.

• CELF is faster than Support Vector Regression (SVR) but slower than MLP-ANN for 
shadowing prediction due to the time-expensive weight matrix computation.

• CELF needs only <1 s for predicting shadowing loss of up to 7,276 links simultaneously.

Running time comparison for loss field learning and shadowing prediction.

Loss Field Learning Time (s) Shadowing Prediction Time (s)

For fixed dataset, we use 16,977 link measurements for training and test the learned loss field on 7,276 links 
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Summary



• Introduce the need for channel models with low computational complexity and high 
precision that adapt to DSA mobile networks.

• Proposes CELF, which learns an explainable loss field and uses it to predict shadowing 
loss on any new links in a deployment area. 

• Evaluate CELF’s precision and efficiency using indoor and outdoor real-world datasets.

• Comparison to ML and empirical methods validates CELF as a new and explainable 
learning model for precise and fast site-specific radio channel loss estimation. 
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