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ABSTRACT
Radio frequency (RF) solutions for human vital sign monitoring
have gained importance due to their low device cost and non-
contact sensing. However, most systems are quite heavy users
of RF spectrum, e.g., transmitting hundreds of WiFi packets per
second, which then interferes with wireless communications. In
this paper, we present a narrowband RF-based pulse rate monitor-
ing system which uses orders of magnitudes less spectrum and
remains low-cost and non-contact. To achieve this, we use received
signal strength (RSS) measurements, which then impose challenges
due to the very low signal-to-noise ratio and the use of a single-
dimensional measurement of the channel. We apply a combination
of linear and non-linear filtering, and a new estimator to address
these challenges. We report experimental results showing an error
of 1.6 beats/min (bpm), similar to the state-of-the-art, but using
three orders of magnitude less bandwidth.
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1 INTRODUCTION
In the past decade, numerous RF-based sensors have been proposed
for non-invasive and unobtrusive vital sign monitoring, most based
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Figure 1: WiFi channel utilization when CSI is measured on
the same channel using Atheros CSI tool

on channel measurements from WiFi and from radar transceivers.
Human motion generally changes the radio channel; even the vi-
bration of skin caused by the pulses of a beating heart can change
the radio channel. The change in radio channel measurements due
to such skin vibrations is used in non-contact monitoring of pulse
rate. However, state-of-the-art RF-based pulse rate monitors are
profligate users of scarce RF bandwidth, which ultimately will limit
the ability of ubiquitous monitoring systems to coexist with cur-
rent wireless communication systems. To enable ubiquitous RF vital
sign monitoring, e.g., in every room of an assisted living facility or
hospital, in the presence of interfering wireless communications
systems, efficient bandwidth utilization will be critical.

Existing RF vital sign monitors employ one of various radio
channel measurements. Many systems process time-of-flight (TOF),
Doppler shift or channel impulse response (CIR) measurements
using radar systems [1, 3, 8, 9], or channel state information (CSI)
measurements from 802.11n systems [4]. Most of these implementa-
tions need a wide RF bandwidth. For instance, radar-based solutions
like the frequency-modulated continuous-wave (FMCW) system
in [1] require a 1.8 GHz wide bandwidth to estimate breathing and
pulse rates. This causes self-interference to other FMCW systems
and ultra wideband communications in the same band.

WiFi systems including 802.11n are based on frequent packet
transmissions on channels with bandwidth of at least 20 or 40 MHz
[4]. WiFi packet transmission rates are as high as 600 samples per
second for reliable vital sign monitoring [10]. But we find that
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packet transmission rates at high levels significantly impact co-
located WiFi links. In Figure 1, we show the WiFi goodput for a
communication link when the same channel is also used to measure
CSI measurements on a second link. A CSI sampling rate of 100 Hz
reduces goodput by 15%, while a rate of 600 Hz reduces goodput by
33%. Large-scale monitoring of patients throughout a facility, for
example, will exacerbate the degradation.

Some systems use received signal strength (RSS) measurements
for monitoring [2]. While most RSS-based systems can not achieve
pulse monitoring, the few exceptions require a wideband imple-
mentation on expensive platforms such as the universal software
radio peripheral (USRP) [11] or laboratory equipment [12].

In this paper, we present pulse rate monitoring capabilities of the
RSS measured from commercial-off-the-shelf (COTS) narrowband
radio transceivers. To the best of our knowledge, our system is the
first pulse rate monitoring system that uses RSS measured from
COTS transceivers, and it utilizes the lowest bandwidth of any
reported RF-based pulse rate monitor. Past work has demonstrated
that the changes induced by a stationary person’s inhaling and
exhaling provides sufficient impact on the radio channel to be
observed in the RSS on a standard WiFi or Zigbee transceiver [2, 4].
However, we have not seen a system capable of estimating the pulse
rate of a person purely from the RSS measured on a stationary link.
We believe this is because of the multiple challenges that need to be
overcome to monitor pulse from the very small changes observed
in RSS caused by the vibration of a person’s skin due to their pulse:

(1) Low amplitude signal: The amplitude of the pulse-induced
RSS signal is very small, typically < 0.01 dB, about an order
of magnitude lower than the breathing-induced RSS signal.

(2) Quantization: Most commercial transceiver ICs quantize RSS
to 1 dB or more.

(3) Noise: The noise power in the RSS signal is significantly
larger than the pulse signal power. In addition, the noise is
heavy-tailed, prone to large impulses.

(4) Non-sinusoidal waveform: The movement of the skin due to
the pulse more closely resembles a repeating impulse rather
than a sinusoid, thus standard spectral analysis is suboptimal.

To address these challenges, we first develop a fine-resolution
RSS measurement system that uses narrowband transceivers. Our
intuition is that RSS is primarily noisy due to quantization; we
use a low cost narrowband transceiver and exploit a feature that
allows us to obtain raw signal samples so that we can calculate
unquantized RSS. Then, while we are unable to use PCA-based
denoising like most related wideband monitoring systems because
we have a single-dimensional signal, we can still use temporal
features to remove noise. We use a combination of Hampel and
Butterworth filters to cancel breathing interference and heavy-
tailed, high frequency noise. Finally, to address the final challenge,
we introduce an estimator to combine the pulse harmonics in the
magnitude spectrum to improve estimation performance.

Our experimental results show that accurate pulse rate estima-
tion can be achieved with use of only 11 kHz of the RF spectrum.
Initial tests on subjects lying down on a cot result in an average
error of 1.6 beats per minute (bpm) across three subjects. These
results show that accurate RF based vital sign monitoring can be
achieved with inexpensive hardware and with orders of magnitude
less bandwidth than reported in related work.

2 METHODS
2.1 Hardware
Our RF sensing hardware is composed of a pair of inexpensive wire-
less nodes. Each node includes a Beaglebone Green (BBG) platform
connected to an RF subsystem via SPI interface. Our custom RF
subsystem is designed as a cape for the BBG, and contains a TI
CC1200 sub-GHz narrowband radio transceiver, its matching net-
work, and an SMA-connected antenna. The CC1200 can operate at
multiple center frequencies, including 169, 434 MHz and 915 MHz
ISM bands. The parts for each node cost less than 50 USD, compared
to more than 1000 USD for a USRP N200 used in other RF-based vi-
tal sign monitoring systems [1, 11]. While this is a proof-of-concept
prototype; that the BBG is overkill but made prototyping easier, a
purpose-built system would be even less than half of the cost.

2.1.1 RSS Measurement. We adopt a high resolution RSS estima-
tion approach described in [5] using the CC1200 transceiver. In our
system, we use two devices with one device transmitting a CW
signal at 434 MHz and the other capturing its receiver’s complex
baseband samples and sending them to the BBG via SPI. We em-
ploy the programmable real-time processing unit (PRU) sub-system
within BBG for continuous data collection without rate variation.

The CC1200 radio transceiver is configured to use a 11.26 kHz
channel in the 434 MHz ISM band. The transceiver allows reading
the 17-bit magnitude and 10-bit angle of each complex baseband
sample received by the CC1200. The PRU subsystem on the BBG is
programmed to collect every new sample via SPI bus at a rate of 45
kHz and store the samples in the shared memory space. Concur-
rently, the main program running on Linux on the main processor
reads data from the shared memory, and adds timestamps. Each RSS
estimate, r (t), is computed from 100 samples of the 17-bit magni-
tude by summing the squared magnitude [5]. This process reduces
the average sampling rate to 449 Hz, which is more than sufficient
for pulse rate estimation.

2.2 Algorithms
In this subsection, we describe how we apply methods to filter
the noise and interfering signals, and we present a novel spectral
domainmethod to estimate the pulse rate despite the non-sinusoidal
nature of the signal.

For pulse rate estimation, we consider a human subject lying
or sitting between a pair of wireless nodes. Any larger motion of
the body would cause very large changes in the RSS that would
prevent isolating the pulse-induced signal. However, humans are
stationary at many points during the day and night, and monitoring
resting pulse rate may have application in home health monitoring,
fitness tracking, and sleep monitoring. A person would not need to
remember to wear or turn on a pulse rate monitor, as non-contact RF
sensors could be embedded in the environment and simply monitor
pulse rate whenever a person was present and stationary.

Fig. 2a shows an RSS signal recorded from a seated subject.
Breathing patterns are visible in the power measured at the receiver
— we can see about eight cycles with peak-to-peak amplitude of
about 0.1 dB over 20 seconds, which corresponds to a breathing
rate of 24 breaths per minute. Without any other signal processing,
however, it is impossible to identify the pulse signal. In addition to
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(a) Raw RSS and PSD
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(b) Hampel-filtered RSS and PSD
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(c) Butterworth-filtered RSS and PSD

Figure 2: RSS before and after denoising using Hampel and Butterworth bandpass filters for a person lying down.

the breathing-induced signal, the RSS measurements are corrupted
by noise that appears to be additive and Gaussian, as well as impul-
sive, heavy-tailed noise that sends the measured RSS significantly
lower or higher for one or two samples.

2.2.1 RSS Denoising. We apply denoising techniques to be able to
remove the effects of noise and corrupting signals and extract the
pulse-induced signal. To replace outliers due to heavy-tailed noise,
we implement a Hampel filter, a generalized median filter with
more flexibility in parameter tuning [7]. Fig. 2b shows the output
of the Hampel filter for the raw data in Fig. 2a. The Hampel filter
can be seen to remove outliers from the raw RSS data, but to keep
low-frequency interfering signals, including a strong breathing-
induced signal. Hence, a fourth order Butterworth bandpass filter
(BPF) is applied to cancel out additive Gaussian noise, respiration
harmonics, and other low-frequency interference. The lower and
higher cut-off frequencies of the BPF are set to 0.8 Hz and 5.0 Hz,
respectively. The PSD of the resulting signal, shown in Fig. 2c, is
dominated by the harmonics of the pulse signal.

2.2.2 Pulse Rate Estimation. Once the undesired signals are filtered
from the raw RSS, a resulting pulse rate can be estimated from the
PSD using our estimation algorithm. Since a normal adult human
resting pulse rate falls in the range between fmin = 0.84 Hz and
fmax = 1.67 Hz [6], the pulse rate is estimated by locating the
peak value of PSD in the frequency band. However, pulse energy
is distributed along harmonics of the fundamental frequency of
the pulse signal. Pulse detection is enhanced by superimposing the
first two harmonic bands corresponding to cardiac frequency band.
The pulse rate is determined by finding the peak frequency in the
resulting superimposed PSD.

The pulse rate estimation algorithm starts by initializing a buffer
to store the incoming RSS samples continuously. At every second,
mean-subtracted RSS data in the buffer is denoised using both
Hampel and Butterworth bandpass filters. Then, the PSD sr (f ) of
the resulting data is computed using the FFT. To improve pulse
detection, we superimpose the PSD in resting cardiac frequency
band (i.e. fmin to fmax ) upon the PSD in its second harmonic band
(i.e., 2fmin to 2fmax ). The estimated pulse rate corresponds to the
frequency at which the maximum value of the sum of PSDs is
obtained. To avoid inaccurate pulse rate estimation as a result of
random body motion, pulse rate is estimated only when the peak
value of the PSD is below a certain threshold as disturbance in the

RSS data due to motion artifacts usually provide higher peak value
of the PSD compared to the value obtained for pulse-induced signal.

f̂ = argmax
f

(sr (f ) + sr (2f ) ↓2) , f ∈ (0.84, 1.67)

3 EXPERIMENT
To evaluate our system for real time pulse rate monitoring, we
test three different subjects and two different environments. All
subjects are healthy adults in the age between 24 to 29 years old.

The two environments are: 1) a research laboratory, and 2) a
conference room. Both are occupied with their typical furnishings,
including chairs, desks, and equipment. Both rooms have an approx-
imate area of 56 m2, and only a single user is present in the room
during each experiment. Fig. 3a shows the setup for experiments
when the subject lies down. A cot elevates the person 15 cm above
the floor, and the two directional antennas are set at 30 cm from
the ground, separated by 1 m from each other, and directed at the
chest of the subject. In another setup, a subject sits in a chair 50 cm
above the ground. In this case, each antenna is 60 cm away from
the chest of the subject, 1 m away from the other antenna, and 1 m
above the ground as shown in Fig. 3b. The receiver node of our
system is connected to a laptop that processes the RSS data, and
outputs pulse rate estimates in real-time.

To record the ground truth, we capture pulse rate measurements
using a pulse oximeter physically attached to the subject’s finger.
We use Respironics Philips NM3 with pulse oximeter which is also
connected to the same laptop. For this evaluation, we run each
experiment for five minutes.

(a) Lying on a cot (b) Sitting on a chair

Figure 3: Experiment setup for pulse rate monitoring.
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Figure 4: Pulse rate RMSE for different subjects

4 RESULTS
We evaluate the performance of pulse rate estimation in two differ-
ent setups. The first setup involves a test in a conference room of
size approximately 7m × 8m in which the subject sits on a chair,
and the directional antennas separated by 1 m are set across their
shoulders. Fig. 4b shows the root mean squared error (RMSE) of
pulse rate estimates for each user. In Fig. 4a, we show the RMSE for
lab setup where a subject lying on their back on a cot 15 cm above
the ground. We observe that the RMSE for the second setup yields
an RMSE of 1.57 bpm compared to 3.67 bpm for sitting users in the
first setup. It may be that the geometry for monitoring pulse via RF
is better in the setup with the cot than with the chair. This may also
be that it is more difficult to be genuinely still while seated vs. when
lying down. However, the RMSE for lying users is still comparable
with the median error of ∼2 bpm obtained using wideband WiFi
CSI measurements [4].

Fig. 5 quantifies the ability of the system to track the changes in
pulse rate over time. Our algorithm is able to estimate the pulse rate
for users who have different pulse rates, in the 67-73 bpm range for
user sitting on a chair and in the 56-64 bpm range for user lying
on a cot. Also, the pulse rate shown in Fig. 5 typically tracks the
increases and decreases in pulse rate observed over the course of
tens of seconds for the person. However, there are short periods
during which the pulse rate estimate jumps very high or very low.
Further investigation will be required to track other motions of a
person to determine if the jumps are caused by larger motion of
their body, or if there is another cause. Further work could also
investigate tracking methods that could avoid the large jumps in
the pulse rate data.

Given the 69 cm wavelength at the center frequency in use (434
MHz), and the fact that pulse rate-induced skin vibrations may
move the skin on the order of mm, it is quite surprising to be able
to observe a person’s pulse rate in the measured RSS. However, the
results indicate that RSS-based pulse rate monitoring is possible
with 20 s of data, that it can track pulse rate variations over time,
and that it can stay within 1.6 bpm RMSE of the rate measured by
a clinical-grade pulse oximeter.

5 CONCLUSION
In this paper, we present an RF-based pulse rate monitoring system
using two low-cost single carrier radio transceivers which operate
using 11 kHz of RF bandwidth. We develop a method to estimate
a person’s pulse rate from single-channel RSS measurements. We
test our RSS-based pulse rate estimation, and show that it attains
an RMSE of 1.6 bpm across three lying subjects. Our low-cost RF-
based vital sign monitoring system performs as well as reported
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Figure 5: Estimated pulse rate vs ground truth over time.
User 1 is lying on a cot, User 2 sitting on a chair.

results from several state-of-the-art systems while using three or-
ders of magnitude less bandwidth. Without reducing the very high
bandwidth utilization of the state-of-the-art RF sensing systems,
we believe that it will be very difficult to realize ubiquitous RF
sensing as envisioned by many in the research area. We believe
our results provide an important proof-of-concept to show that
low-cost and low-bandwidth sensing is possible and may be an
enabler for ubiquitous RF sensing.
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