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Quantifying Interference-Assisted Signal Strength
Surveillance of Sound Vibrations
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Abstract—A malicious attacker could, by taking control of
internet-of-things devices, use them to capture received signal
strength (RSS) measurements and perform surveillance on a
person’s vital signs, activities, and sound in their environment.
This article considers an attacker who looks for subtle changes
in the RSS in order to eavesdrop sound vibrations. The chal-
lenge to the adversary is that sound vibrations cause very low
amplitude changes in RSS, and RSS is typically quantized with
a significantly larger step size. This article contributes a lower
bound on an attacker’s monitoring performance as a function
of the RSS step size and sampling frequency so that a designer
can understand their relationship. Our bound considers the little-
known and counter-intuitive fact that an adversary can improve
their sinusoidal parameter estimates by making some devices
transmit to add interference power into the RSS measurements.
We demonstrate this capability experimentally. As we show, for
typical transceivers, the RSS surveillance attacker can monitor
sound vibrations with remarkable accuracy. New mitigation
strategies will be required to prevent RSS surveillance attacks.

Index Terms—Received signal strength, respiratory rate mon-
itoring, sound eavesdropping

I. INTRODUCTION

EXISTING internet-of-things (IoT) devices are notoriously
easy to compromise [1], [2], [3]. Given that devices bring

sensors like microphones and cameras into our private spaces
[4], people are rightfully concerned for their privacy. People
know what kind of information an attacker could obtain from
compromising a video camera in their private spaces, and
may not deploy them [5] purely due to privacy concerns.
Some may consider themselves at high risk for attacks to
their privacy and may physically disable a video camera,
like Facebook CEO Mark Zuckerberg [4]. Even among the
privacy conscious, though, there is little awareness of what an
attacker could obtain from compromising a device which can
measure received signal strength (RSS). Yet, every wireless
device could be a radio frequency (RF) sensor.

RF sensors have been shown to be capable of monitoring
breathing and heart rate [6], location [7], [8], activity [9],
gesture [10], audio [11], and keystrokes [12]. An attacker who
could remotely control IoT devices would be able to surveil
and record data on anyone who is near those devices. An
attacker could exploit a device’s channel state information
(CSI) which can only be obtained from a select group of WiFi
network interface cards (NICs). The most capable RF sensing
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Fig. 1: Additive noise helps small amplitude sine wave cross
a quantization threshold

systems reported in the literature use CSI measurements [6],
[7], [9], [12]. Compared to CSI, RSS is available almost
universally in wireless transceivers because network functions
such as multiple access control and power control [13], [14],
[15] require it. RF sensors using RSS have been used to
perform contact-free vital sign monitoring [16], device-free
localization [17], and gesture and activity recognition [18] in
limited settings. However, we have not seen any system that
detects sound vibrations using RSS from commercial wireless
transceivers. RSS is thought to be coarse and limiting because
low-amplitude changes in RSS due to sound vibrations, for
example, can easily be lost due to the large quantization step
size of most RSS measurements.

Past research has extensively dealt with quantization in
which noise added before quantization is used to improve
signal detection and parameter estimation [19], [20]. Dithering
is the most common application of noise to reduce undesirable
distortions due to quantization in digital audio and image
processing systems [21]. The effect of adding noise in general
parameter estimation has been studied using Cramér-Rao
bound analysis in the past [22], [23], [24]. However, such
past work is based on either simple [23] or too complicated
[24], [22] assumptions that generally fail to provide practically
useful information about helpful interference in RSS-based
sound eavesdropping.

In this article, we show the effect of interference in detecting
sound vibrations from RSS measurements. As we show, an
attacker can use an extra compromised transceiver to trans-
mit what we call helpful interference (HI). We describe the
counter-intuitive idea that some extra noise in the received
power, due to an interferer’s signal, will enable reliable esti-
mation of the low-amplitude changes to the received power,
even with large quantization step sizes in the RSS. In addition
to demonstrating HI, this article addresses the question, what
is the best that an attacker could possibly do? We present an
analytical bound on the best performance for the attacker in
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Fig. 2: Received power with RSS quantized to the nearest integer and spectrogram of the RSS, while a 100 Hz single tone
sound is played on Google Home speaker. (a) Without interference, RSS is constant, but (b) with interference the RSS crosses
to the lower value at least once per period, enabling spectral estimation of the sound.

this scenario.
Our bound has two purposes. Knowing an attacker’s limits

can provide a guarantee to a user, that even if the device
is completely compromised by an attacker, its ability has
a particular quantitative limit. Furthermore, if these limits
are known as a function of transceiver parameters, then a
transceiver designer can adapt the design to reduce an at-
tacker’s capabilities.

Quantization and Interference: Quantization is generally
thought to be good news for security against a privacy attacker
with access to RSS. A well-known limitation of RSS is that it
is quantized, typically with 1 dB step size (although sometimes
0.5 dB or 4 dB). Typical changes to received power due
to sound are much less than 1 dB. Fig. 2a shows what
often happens—the received power (displayed as −−−) is
affected by vibrations caused by a 100 Hz single-tone sound
played on a speaker, but the quantized RSS (displayed as
−−−) is constant. However, the bad news we discover in this
investigation is that an attacker’s capabilities are greater than
previously thought because the attacker can exploit what we
call helpful interference (HI). HI is the purposeful transmission
of interference from other devices to increase the variance of
the RSS measurement at a receiver. An attacker could use
other compromised devices to transmit, perhaps with carrier
sense disabled, to generate HI. Counterintuitively, this increase
in measurement variance prior to quantization can actually
improve the attacker’s estimates of frequency and amplitude,
partially negating the effects of quantization. Fig. 2b shows an
example of how noise from an interferer helps to sometimes
“push” the quantized RSS over the boundary to the next RSS
value, thus making the 100 Hz sound observable on the RSS
spectrogram. We provide the first experimental demonstration,
to our knowledge, of the ability to use received power from
commercial-off-the-shelf (COTS) transceivers to record sound
and the use interference to improve the performance of an
RSS-based sound eavesdropping. Our experimental observa-

tions with varying levels of helpful interference also exhibit
an optimal level of HI. The estimation bounds presented in
this paper take into account an attacker’s ability to use HI,
and also show that there is an optimal level of HI beyond
which performance degrades. The resulting variance bounds
are a function of the transceiver’s RSS quantization step size
and sampling rate. Device makers can use this bound to limit
the inadvertent measurement capabilities of attackers by the
design of their device.

Sound Eavesdropping: We pay particular attention to RSS-
based sound eavesdropping in this paper because sound causes
only slight changes in RSS while possessing vital private
information about a person’s activity and their surroundings.
We believe it is important to know the relationship between
the performance of sound eavesdropping and quantization step
size and RSS sampling rate, which can be computed from the
bound in this article. Further, sound reveals private information
about persons activity, their communications, and objects and
incidents in their surroundings. Typically, a person would not
want anyone outside of the room to have such data. While
we emphasize on sound eavesdropping in this article, the
same principle applies to many other RF sensing applications
including breathing and heart rate monitoring.

Contribution Summary: We summarize the contributions of
this article as follows:

1) We present the first RSS-based sound eavesdropping
demonstration using COTS transceivers.

2) This article is the first to propose, quantify, and experi-
mentally validate the use of interference to improve RSS-
based sound eavesdropping.

3) This article also provides a lower bound on estimation
variance for frequency and amplitude estimates, and
applies it to provide quantitative lower limits for RSS-
based sound eavesdropping.

In combination, this article shows that an RF sensing
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surveillance is a greater threat than previously thought. In
particular, while RSS was thought of as a poor choice for an
attacker, that helpful interference can increase the information
available to the attacker using quantized RSS. Since RSS is
readily available from almost all wireless interfaces, even IoT
devices without sensors (e.g., smart light bulbs) can be used
for such an attack.

II. RELATED WORK

Radio Frequency Sensing: Radio Frequency sensing uses
radio channel measurements to monitor human vital signs,
detect activity or monitor sound in the environment. Various
radio channel measurements such as received signal strength
(RSS), channel impulse response (CIR), and channel state
information (CSI) have been used for multiple RF sensing
applications including contact-free vital sign monitoring [25],
[6], device-free localization [26], [27], gesture and activity
recognition [9], [18], and human identification [28].

Among several channel measurements employed in most
commercial wireless systems, RSS is considered to be the
most widely available measurement across diverse wireless
platforms [29]. RSS has been applied in various RF sensing ap-
plications including acoustic eavesdropping [11], device-free
localization [17], contact-free vital sign monitoring [30], [25],
security & surveillance [31], activity and gesture recognition
[32], [33], and home monitoring [26].

Sound frequency often provide vital information about an
activity in the surrounding. In contrast to traditional inertial
sensors which require to be physically attached the source of
vibration, RF sensors allow non-contact sensing. Prior work
has showed that RF signal strength measurements [11] and
phase measurements [34] can be used to eavesdrop acoustic
vibrations from large speakers. However, these demonstrations
use expensive software-defined platforms and are not applica-
ble in most commodity wireless systems.

The ease of access to RSS in commodity wireless systems
and its capability in RF sensing allows a potential threat
on privacy. Little attention has been paid to these threats,
mainly because RSS-based sensing has been reported to have
limited reliability as a result of its relatively large quantization
step size [33]. However, the limits on the capability of RSS-
based sensing has not been fully explored. In this paper, we
experimentally demonstrate such an unexplored RF sensing
capability that uses noise superimposed in RSS measurements
to improve sound eavesdropping.

Estimation Bounds: Estimation bounds are statistical tools
used to evaluate the performance of algorithms in estimating
certain parameters of interest with respect to the maximum
theoretically attainable accuracy, commonly based on their
estimation variance. The Cramér Rao lower bound is the
most common variance bound due to its simplicity [23]. It
provides the lowest possible estimation variance achieved by
any unbiased estimator.

Evaluating the accuracy of algorithms used in RSS surveil-
lance is essential step to determine eavesdropper’s capabilities.
An analytical explanation for the relationship between noise

power, sampling rate, amplitude, quantization, and parameter
estimator performance in the context of RSS surveillance
has not been presented. The change in RSS due to periodic
activities like respiration can be generally modelled as a sine
wave [35]. For unquantized sine wave signal, the CRB on the
variance of unbiased frequency estimators is derived in [23],
[36]. However, RSS has a signficantly higher quantization
step size than the typical RSS change induced by vital signs,
each RSS sample primarily falls into either of two successive
RSS values. Høst-Madsen et al. [37] quantitatively explain the
effect of quantization and sampling on frequency estimation of
a one-bit quantized complex sinusoid, but without presenting
bounds for amplitude estimation or considering a DC offset as
a complicating parameter. A more complicated CRB analysis
for multi-bit quantized sine waves is also presented in [22],
[24]. However, the changes in received power due to sound
vibrations are very small compared to the RSS step size, and
RSS takes two quantization levels represented by a single bit.
In this paper, we evaluate attacker’s bound on frequency and
amplitude estimation specifically for RSS-based sound eaves-
dropping while considering factors like DC offset. Further,
we demonstrate what is observed in the bound, that increased
interference power can actually help improve estimates.

Wireless Network Security: Security in wireless networks
is conventionally achieved through cryptographic protocols
at multiple layers in the network stack. In wireless local
area networks including 802.11, a number of cryptographic
protocols have been standardized including IPSecurity, Wi-Fi
Protected Access (WPA), and Secure Sockets Layer (SSL).
Due to the broadcast nature of the wireless medium, re-
searchers have proposed additional security protocols at the
physical layer to deter eavesdropping and jamming, such as
by exploiting channel characteristics [38], [39], employing
coding schemes [40], or controlling signal power [41], [42].
However, these approaches do not prevent an adversary already
with some access to a system from using PHY layer signal
measurements for sensing purposes. Moreover, even if the end-
to-end encryption prevents the attacker access to the data from
the source the attacker can still access the RSS from received
packet.

Such an adversary can also force a wireless device to
continuously transmit helpful interference in order to re-
duce the effect of quantization on the quality of the RSS
information. Most wireless standards use a multiple access
control method to avoid interference, such as carrier-sense
multiple access (CSMA). However, many RFICs (e.g., Atheros
AR9271) provide the option to disable CSMA and control the
random backoff timer [43]. These vulnerabilities pave the way
for the attacker to change a device’s software to create an
interferer operating on the same channel at the same time as
the receiver measuring RSS.

Despite considerable research in privacy, an RSS surveil-
lance attack exploiting measurements from wireless systems
is an unresolved problem. Banerjee et al. demonstrate that
an attacker can easily estimate artificial changes in transmit
power to detect and locate people through a wall. In [44],
an third device is introduced to distort the PHY layer signal
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before it could be used by eavesdropper for sensing purposes,
but fails for multiple-antenna eavesdropper or if a device can
be remotely compromised and caused to run the attacker’s
software.

III. THREAT MODEL

We assume that a home has two or more transceivers, and
that there are sound vibrations in the vicinity of these devices.
Slight motions caused by sound vibrations from a speaker or
nearby object cause changes in the radio channel that can be
observed at the receivers as variations in the received power,
and indirectly in RSS, which is the quantized received power.

We assume that an attacker can access the transmitters and
receivers in the home, and that they can alter device firmware
or software to force transmitters to transmit more often and
receivers to receive (and collect RSS measurements) more
often, up to the maximum rate and maximum RSS precision as
possible with the receiver hardware. Since wireless standards
(e.g, 802.11) require higher layer access to signal strength
[45], an attacker can use this information maliciously for RSS
surveillance. This attack model is practical as it has been
shown that there are millions of vulnerable and unprotected
Internet connected devices deployed today, and attackers have
repeatedly managed to remotely take over such devices and
install botnets on them [2], [3] or make modifications to
the software/firmware [46]. Furthermore, we assume that an
attacker can force a transmitter to transmit in the same
frequency band at the same time as the other transmitter (e.g.,
by disabling carrier sensing [47], [43], using a hidden terminal)
in order to contribute noise to the receiver, as described in §V.

The attacker can either transfer the measurements to another
processor or process the measurements locally on the same de-
vice. We do not assume any computational or communication
constraints for the attacker. We make no assumption about the
algorithm used except that it is unbiased, e.g., the attacker
does not always guess the same frequency of sound vibration
regardless of the data.

We do not consider an adversary that brings their own
wireless devices to the home. While an attacker who brings
a software-defined radio (SDR) to a home might be able
to monitor a resident with greater accuracy, this would re-
quire physical proximity to each home to be attacked and
considerable cost for each SDR. In contrast, the attack we
study requires only remote access to the already installed but
compromised commercial wireless devices, and thus could be
launched without new hardware and on a very large scale.

IV. EFFECT OF SOUND ON RSS

It is counterintuitive that sound would have an effect on
measurements of signal strength. The amplitude of vibrations
due to sound (on the order of a millimeter or less) are a
small fraction of the wavelength of the RF wave (on the
order of 100 mm or higher). In this section, we explain how
a receiver measuring signal strength is capable of measuring
sound vibrations that displace a surface in a sinusoidal pattern
with a peak-to-peak displacement amplitude of ∆z.

a

b

b∆θ

c

θ

Fig. 3: Contribution from unaffected waves a and affected
waves b add in a phasor sum. The phase θ changes, tracing an
arc length b∆θ, and changing the amplitude of the combined
RF signal c.

First, we note that radio waves which reflect or scatter from
a vibrating surface will arrive at the receiver with varying
phase due to the change in path length due to the movement
of the surface. The amplitude of the wave is largely unchanged
due to vibration, since the length change is very small com-
pared to the total path length. However, in a multipath channel,
many waves will not be changed by the vibrating surface.

The multipath waves’ effects add together as a phasor sum
at the receive antenna. Grouping the phasor sum of waves
not changed by the vibrating surface as a, and grouping the
wave(s) affected by the vibration as b, we graphically show
the phasor sum in Fig. 3. As θ, the phase of b, changes with
a peak-to-peak phase change of ∆θ, the b phasor traces an
arc length bθ, and the amplitude of the sum c changes. The
peak-to-peak phase change is at most 4π∆z/λ where λ is
the wavelength of the RF signal. A wave reflecting off of the
vibrating surface must travel to the surface and back, doubling
the vibration displacement if it travels perpendicularly with
respect to the surface.

The primary question is, is the change in amplitude of the
RF signal measurable in the RSS? The baseline RSS in dB is,
P = 10 log10 |c|2, and using the law of cosines to formuate c,

P = 10 log10

(
a2 + b2 + 2ab cos θ

)
. (1)

Since the displacement is so small for sound vibrations
compared to the wavelength, the change in θ is small, and we
can use a first-order Taylor series approximation to describe
the change in power ∆P as a function of the change in θ.

∆P ≈ ∆θ

∣∣∣∣∂P∂θ
∣∣∣∣ , (2)

where ∆θ = 4π∆z/λ and P is from (1). Defining the relative
amplitude of the affected component as β = b/a, the power
change becomes,

∆P ≈ 80π∆z

(ln 10)λ

Å
β sin θ

1 + β2 + 2β cos θ

ã
. (3)

This change in power is plotted in Fig. 4 for a few values of
β over the range 0 < θ < π/2 rad. Here we use a frequency
of 915 MHz and ∆z = 0.1mm, but the result is proportional
to ∆z so we explain it as the power change in dB per 0.1 mm
of peak-to-peak displacement.
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Fig. 4: The power change ∆P vs. relative angle of the affected
component, for ∆z = 0.1mm, with • showing maximum at
(θmax,∆Pmax).

We can see there is a maximum possible ∆P for any value
of β. Taking the derivative of (3) with respect to θ and setting
it to zero, we find the optimal angle of the affected component
to be,

θmax = arg max
θ

∆P = cos−1
Å −2β

1 + β2

ã
. (4)

Next, we assume that 0 < β < 1 because β = b/a and
we would assume that the fact that b includes a reflection or
scattering from the vibrating surface would mean that it would
have a lower amplitude than a line-of-sight component. Using
this angle in (3), we find that the maximum ∆P is given by

∆Pmax = max
θ

∆P =
80π∆z

(ln 10)λ

β

1− β2
, (5)

for 0 < β < 1. These maxima are plotted in Fig. 4.
Further, if the relative phase θ is uniformly random between

0 and 2π, we can calculate the expected value of ∆P .
Integrating the product of 1

2π and ∆P from (3) for θ between
0 and 2π, we find:

Eθ[∆P ] =

Å
8∆z

λ

ã
10 log10

1 + β

1− β . (6)

a) Discussion: For very low β, that is, when the ampli-
tude of the affected component is relatively small, the change
in power is approximately proportional to β and thus small as
well. It is maximized, however, at an angle of θ = π

2 radians
or 90o.

For β close to 1, that is, when the affected component has
almost the same amplitude as the unaffected component, the
change in power can be very high, in fact, ∆P asymptotically
approaches ∞ as β → 1. This is a result of the chance that,
when β = 1, the two components can completely cancel,
resulting in a total linear power of zero, i.e., −∞ dB, which
would then not be measured. In reality, this simply means that
there will be a chance that ∆P will be large when β ≈ 1.

Finally, (6) gives a straightforward formula for finding the
expected value of ∆P . This is plotted in Fig. 5 for ∆z = 0.1
mm. That is, for every 0.1 mm of peak-to-peak displacement
due to vibration, we can expect the received power to change
as given in Fig. 5.
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Fig. 5: For each 0.1 mm of peak-to-peak displacement due to
vibration, the expected value of the change in received power,
vs. β = b/a, the relative power in the affected component.

The results show that measurable power changes should be
expected from vibrating objects as long as the amplitude of
the affected component is within a few dB of the unaffected
component. At a relative affected power of -6 dB (β = 0.5),
E[∆P ] = 0.0116 dB. This is approximately the same as the
standard deviation of error in a single RSS measurement [33].
However, at -20 dB (β = 0.1), E[∆P ] = 0.0021 dB, about 6
times smaller than the standard deviation of the measurement.
Thus we can see how it is important in these monitoring
applications to design the system to keep the amplitude of
the affected component within the same order of magnitude
as the unaffected component.

The behavior of power change vs. frequency may be more
complicated than revealed by (3) - (6). As given, the power
change due to vibration is proportional to the center frequency
of the RF signal. We test a system at 915 MHz, has lower
power change by a factor of 2.4/0.915 compared to a 2.4 GHz
system. However, loss through walls increases dramatically
with frequency, for example, showing a linear increase in
attenuation with frequency [48]. This loss could reduce b and
thus β in through-wall systems.

While the change in received power due to sound vibrations
is mostly in the order of 0.01dB, most wireless transceivers
provide received signal strength typically quantized to 1 dB. In
subsequent sections, we present a novel approach to overcome
RSS quantization for RSS-based sound eavesdropping.

V. RSS SURVEILLANCE WITH HELPFUL INTERFERENCE

In this section, we describe and demonstrate RSS-based
sound eavesdropping with helpful interference. To the best of
our knowledge, we are the first to introduce the use of helpful
interference, that is, transmitting interference to overcome the
limitation of RSS quantization in spectral estimation.

A. Devices and Setup

For our evaluation, we desire a commercial wireless
transceiver, but we need control over the quantization step size
and sampling rate. We achieve this goal by using a commercial
wireless transceiver, the TI CC1200. The CC1200 radio is used
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Fig. 6: Experiment Setup

as integral part of some commercial internet-of-things (IoT)
products [49] and it has been shown to measure received power
with error only within 0.01dB [33]. We then can apply any
quantizer to the received power in post-processing to emulate
the RSS that would have been reported using an arbitrary
transceiver RSS quantization step size.

We use CC1200 transceivers configured as transmitter,
receiver and HI transmitter nodes. In this experiment, the
CC1200 registers are configured with 802.15.4g radio settings
at a less congested ISM band at 915 MHz to have a better
control on the level of interference in the channel. While we
believe that uncontrolled interference could also benefit sound
eavesdropping, we control our interference source for purposes
of understanding the relationship between interference power
and monitoring performance. For simplicity, the transmitter
sends a continuous wave signal at a transmit power of 12 dBm.
The receiver node uses the average of the squared magnitude
to compute the received power. This outputs a received power
measurement at a rate of about 2 kHz. The third transceiver
is programmed to generate HI in which we implement a 2-
FSK transmitter with a symbol rate of 256 Kbps in the same
band and transmit random symbols. To study the effect of the
magnitude of interference, we also control the output power of
the interferer by changing the value of the PA_CFG1 register
on the CC1200 transceiver.

Fig. 7: Quantile-quantile plot of r[dBm] - r̄[dBm] compared
to Gaussian N(0,1). Theoretically, measured data would match
the solid line.

Fig. 8: As HI power increases each 45s, the frequency esti-
mation error decreases to a minimum of 9 Hz.

The experiments were conducted mainly in laboratory set-
tings in a building at Washington University in St. Louis.
We run the experiments with three CC1200 transceivers op-
erating as a transmitter, a receiver, and a helpful interference
transmitter (HI TX). The transmitter and receiver are typically
separated by 2 meters from each other. A Google Home Max
speaker is set on a separate table between the transceivers
to play audio. Fig. 6 shows a sample setup used in in this
experiment for sound monitoring. To evaluate the performance
of estimation of the frequency of single-tone sound, we use
root mean squared error (RMSE) as an error metric.

B. Helpful Interference

First, we study the statistical nature of the interference
power from measured data. We compare the distribution of
the interference with a standard distribution. We use quantile-
quantile (Q-Q) plot as it is commonly used to compare two
probability distributions. In Fig. 7, we show Q-Q plot of
measured interference when there is no sound vibration with
respect to Gaussian distribution. We note that the interference
matches the theoretical Gaussian distribution represented by
the solid line within the -4 to +4 theoretical normal quantiles..

We evaluate the effect of increasing interference power
on frequency estimation of single-tone sound from quantized
RSS measurements. In Fig. 8, we show how RSS changes
in the presence of increasing interference. With -15 dBm of
interference at the start of the experiment, the measured RSS
almost always takes the value of -45 dBm. As a result, it is
largely unable to estimate sound frequency, and the RMSE of
the frequency estimate is about 44 Hz. Each 45 seconds, the
HI power is increased by changing the value of the PA_CFG1
register on the interferer radio, as shown in red in the bottom
of Fig. 8. As the interferer’s power increases, the samples of
quantized RSS begin to take more than one different RSS
values, initially taking two values at -45 and -46 dBm. This
then allows estimating the periodicity of the signal. This is
shown to enhance the accuracy of sound eavesdropping by
lowering the RMSE of frequency estimation from 44 Hz to
9 Hz. For the given data, we also note that further increase in
the power of the interference beyond a certain point provides
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(a) (b)

Fig. 9: Sound frequency RMSE as a function of simulated interference when the RSS is quantized with different (a) values of
the quantization step size ∆ and (b) frequency estimators.

more quantization RSS values, but it will not improve accuracy
below 9 Hz of RMSE.

Optimum HI. From the result in Fig. 8, we note that there
is a minimum value of the RMSE of sound frequency with
respect to interference power for a given quantization step-size.
We study the effect of interference for three different frequency
estimators namely counting zero-crossings (ZCC), maximum
likelihood estimation (MLE) and instantaneous frequency (IF)
estimation using the Hilbert transform [50].

Counting zero-crossings: For pre-processed RSS data, the
interval between zero-crossings is inversely proportional to the
sound frequency. Therefore, the frequency single-tone sound
vibration is estimated by taking the number of zero-crossings
divided by twice the window duration.

Instantaneous frequency estimation: In this method, the
Hilbert transform is used to estimate the instantaneous fre-
quency from the analytic signal (complex envelope) of the
sound-induced signal [50]. The instantaneous frequency (IF)
is computed as the first order difference of the instantaneous
phase of the analytic signal.

f(iTs) =

Ä
arctan( r̂(iTs)r(iTs) )

ä′
2π

(7)

where (·)′ represents first order difference and r̂ is Hilbert
transform of the RSS data. Then, the frequency of sound
vibration is estimated as the average instantaneous frequency
across the given time window.

Maximum likelihood estimation: The maximum likelihood
estimator (MLE) provides unbiased and efficient frequency
estimation by finding the peak frequency f̂ in the power
spectral density (PSD) within the range of sound frequency
f ∈ [fmin, fmax]

f̂ = arg max
f

∣∣∣∣∣ N∑
i=1

r(iTs) exp(−j2πfTsi)
∣∣∣∣∣
2

(8)

In Fig. 9b, we observe that for every type of frequency
estimator, there exists an optimal interference power at which
the RMSE of sound frequency gets its minimum for a given
quantization step size. We note that MLE provides the lowest

RMSE with its minimum being less than 10 Hz above the
theoretical lowest error. To study the relation between the
optimum HI power and RSS quantization step-size, we com-
pute the RMSE of sound frequency estimation for different
quantization step-sizes. In Fig. 9a, the sound frequency RMSE
of the MLE algorithm is given as a function of the standard
deviation of HI when the received power is quantized with
three different values of the quantization step size.

VI. BOUNDS FOR RSS SURVEILLANCE

The previous section provides experimental evidence of
the possible benefits of HI, which an attacker can exploit
to improve performance when RSS is quantized. While the
experimental results provide examples of what an attacker
could achieve, they do not provide any guarantees about the
best performance an attacker could achieve. In this section,
we consider eavesdropping on single-tone sound, and provide
analytical limits on the attacker’s eavesdropping capability.
These limits consider that an attacker may use HI, and are a
function of the system parameters of available RSS sampling
rate and quantization step size, as well as the amplitude of the
sound signal being surveilled by the attacker. As before, we
use the variance of frequency estimates of single-tone sound
as an example. Note however that the bound is generally
applicable to any RF sensing application which estimates the
amplitude or frequency of a sinusoidal signal component. We
compute the theoretical lower bounds on estimation variance
using Cramér-Rao bound analysis.

The bounds on variance provide guarantees that are useful
to both users and RFIC system designers. First, note that
one can never guarantee that an attacker cannot estimate the
frequency of a sound tone at all — an attacker can always
estimate sound frequency to be 100 Hz, for example, without
any RSS data, but this would not be a useful attack. We focus
on bounding the lowest possible variance of an attacker’s
unbiased sound frequency estimate since, if this variance is
high, it effectively shows that the attacker is unable to gain
meaningful information about the frequency of the sound.
A user could use such a bound to decide if an attacker
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who compromises the device could effectively monitor sound.
An RFIC designer could alter the parameters of the RSS
measurements made available from the chip to increase the
variance bound and thus make their device more acceptable
to privacy-conscious customers.

A. RSS Model for Single-tone Sound

In order to derive the theoretical bounds on RSS-based
sound eavesdropping, we first model the received power
including the variation due to single tone. As explained in
§IV, we assume that pure tone from speakers changes changes
the measured signal as an additive sinusoidal component.
Here we again use received power to indicate the continuous-
valued power of the signal at the antenna, and RSS to
indicate the quantized discrete-valued power reported by the
transceiver IC. Although generally an eavesdropper may take
burst measurements, we assume a scalar time-dependant signal
for simplicity. We use B to denote the received power when
the sound is turned off, and v(k) to denote the noise in
sample k, which is assumed to be zero-mean white Gaussian
noise with variance σ2. Therefore, the sampled received power
signal is given as

x[k] = A cos (ωTsk + φ) +B + v[k], k ∈ Z, (9)

where Ts is the sampling period, and the sound-induced signal
has unknown amplitude A, DC offset B, frequency ω, and
the initial phase φ. The unknown parameter vector is θ =
[A,B, ω, φ]T .

Our model is that the received power is quantized with
a step size of ∆. Typically ∆ � A, that is, the step size
is significantly larger than the changes in RSS due to many
RF sensing activities including breathing, pulse or sound. In
our experimental study, involving a single tone audio played
on Google Home Max speaker at maximum volume while a
transceiver is placed on the same surface, we observe a peak-
to-peak amplitude of 0.1 dB. Amplitudes of the breathing
signal can be 0.1 dB [33], or 0.3 dB [51]. Pulse-induced
amplitudes are even smaller. It is rare to see transceiver RSS
to be quantized to less than 0.5 dB, as typical step sizes are 1.0
dB or higher. Since A is low compared to ∆ the (quantized)
RSS measurement typically takes one of two neighboring
values. It follows that we can approximate the RSS signal
as a one-bit quantization of the received power x[k]. Note this
approximation is not imperative for obtaining an estimation
bound, since multi-bit CRB analysis of frequency analysis is
possible [24]. When ∆� A, that more complicated bound is
nearly identical to the bound we derive, but the complexity can
obscure the lessons learned from the bound with the one-bit
quantization assumption.

Assuming one-bit quantization, the RSS is represented as:

y[k] = sign (x[k]− ζ) , (10)

where ζ is the threshold for quantization (the boundary be-
tween the two RSS bins) and the sign function sign(·) is
defined as sign(x) = 1 for x ≥ 0 and sign(x) = −1 for
x < 0. Without loss of generality, we assume ζ = 0. The DC
offset B becomes the distance from the nearest quantization

threshold and takes a value in the set [−∆/2,∆/2]. We define
y = [y[0], . . . , y[N − 1]]

T to be our measurement vector.
The attacker’s goal is to estimate A and ω from these RSS

measurements y. oth sound amplitude and sound frequency
provide vital information about the intensity and type of an
activity in the surrounding.

B. Cramér-Rao Bound (CRB) Analysis

Here, we compute the Cramér-Rao bound of the parameter
vector θ given the measurements y. First we define the
probability mass function corresponding to kth sample y[k]
as

fy[k] = P (y[k] = q; θ), q ∈ {−1,+1}.
If we define Ck := cos(ωTsk + φ) and Sk := sin(ωTsk + φ),
then
fy[k](q;θ) = P (y[k] = q;θ) = P (qx[k] > 0;θ)

=
1√
2πσ

∫ ∞
0

exp

Å
− [x− q(ACk +B)]2

2σ2

ã
dx.

Equivalently,

fy[k](q;θ) =
1

2
erfc

Å
− q√

2σ
(ACk +B)

ã
. (11)

To compute the CRB, we first derive the Fisher information
matrix (FIM). From [23], the element of the FIM from ith

row and jth column is given by

I(θ)ij = E

ï
∂ log fy(q;θ)

∂θi

∂ log fy(q;θ)

∂θj

ò
(12)

Since the variables y[k] are independent, the element of the
FIM from ith row and jth column becomes:

I(θ)ij =
N−1∑
k=0

∑
q=±1

1

fy[k](q;θ)

∂fy[k](q;θ)

∂θi

∂fy[k](q;θ)

∂θj
(13)

We compute the partial derivatives for the parameters θ, plug
them into (13), and the resulting FIM becomes:

I(θ) =
2

πσ2

N−1∑
k=0

exp
Ä
− 1
σ2 (ACk +B)

2
ä

1− erf2
Ä

1√
2σ

(ACk +B)
äFk, (14)

where

Fk =


C2k Ck −AkTsSkCk −ASkCk
Ck 1 −AkTsSk −ASk

−AkTsSkCk −AkTsSk A2k2T 2
s S2k A2kTsS2k

−ASkCk −ASk A2kTsS2k A2S2k

 .
In this analysis, we focus on finding the bounds on variance

of unbiased amplitude (Â) and frequency (ω̂) estimators,
which are given in the inverse of the FIM in (14) as

CRB(Â) =
{
I(θ)−1

}
11
,

CRB(ω̂) =
{
I(θ)−1

}
33
.

(15)

For a quantization step size ∆, the DC offset B can be
represented as a uniform random variable defined over the
interval [−∆/2,∆/2]. In addition, each bound is a weak
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Fig. 10: CRB of (Left) amplitude A and (Right) frequency ω, vs. noise power when fs = 400 Hz, f = 100 Hz and
A = 0.025dB. As noise power increases, the estimation variance decreases and then slowly increases.

function of the initial phase φ which is also random and
uniform for our applications. Thus we average the CRB over
uniform phase and uniform DC offset. We use CRB to indicate
the CRB averaged over a uniform phase φ and uniform
DC offset B. Therefore, the variance of amplitude estimates
var(Â) and the variance of frequency estimates var(ω̂) are
bounded by CRB(Â) and CRB(ω̂) respectively.

var(Â) ≥ CRB(Â)

var(ω̂) ≥ CRB(ω̂).
(16)

In subsequent subsections, we study the accuracy of sound
eavesdropping based on estimation variance computed in (16).
In particular, we analyze the effects of quantization step size
∆, interference σ and sampling rate fs .

C. Effects of Helpful Interference

We study the effect of adding noise to RSS measurements
prior to quantization for both amplitude and frequency esti-
mation. For this analysis, we consider low-frequency sounds
particularly f = 100 Hz. Low frequency sounds like rumble
noise in a car are common in our daily encounters. Further, we
consider a sampling rate fs = 400 Hz. We set N , the number
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Fig. 11: Effect of amplitude on frequency estimation

Fig. 12: CRB as a function of quantization step size

of samples, such that NTs = 1 s, and we choose an amplitude
A = 0.025 dB.

We plot numerical results in Fig. 10 for the bound on the
standard deviation of amplitude estimates as a function noise
standard deviation as computed from (16). We note that as
the noise power increases, the bound on standard deviation
of amplitude estimate generally decreases for quantized RSS
measurements. Intuitively, this is because, as the sine wave
is more likely further away from the threshold, even at its
maxima or minima, estimation accuracy requires higher noise
power in order to ensure that the measurements are not
purely from one quantization level. For quantized RSS, small
interference power results in higher estimation variance as
the quantized RSS measurements have a lower probability of
changing their RSS levels with small noise power.

This effect is similarly observed in frequency estimation.
Fig. 10(right) shows the effects of increasing noise power to
RSS prior to quantization on the accuracy of sound frequency
estimation. We see that increasing the noise level decreases
the estimation variance for quantized RSS measurements.
These results indicate that adding HI to a wireless channel
improves the accuracy of amplitude and frequency estimations
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Fig. 13: CRB of (Left) amplitude A and (Right) frequency ω, as a function of sampling rate when σ = 0.25 dB. As sampling
rate fs increases, the estimation variance decreases.

from quantized RSS measurements. They also match the
characteristics observed experimentally in §V.

It is also worthwhile to see the effect of adding noise when
the signal is not quantized. We see the bound for Â from
[36], is var(Â) ≥ 2σ2/N , which indicates that the standard
deviation increases with noise power for unquantized RSS
measurements. Similarily, we see that increasing the noise
level increases the estimation variance of frequency estimates
for unquantized RSS measurements.

Optimum Noise Variance: A key observation from the results
is that the bound on estimation variance using quantized
measurements has a minimum value with respect to noise
power for a given sampling rate and quantization step size.
We note from Fig. 10 that there exists an optimal noise
level at which estimation variance is brought to its minimum
for a given sampling rate and RSS quantization step size.
Our numerical results show that the optimal noise level for
amplitude estimation matches that for frequency estimation. In
Fig. 12, we observe that the standard deviation of this optimal
noise is linearly proportional to the RSS quantization step size,
and that σopt is approximately ∆/4. Interestingly, this standard
deviation of helpful interference is just less than the standard
deviation of quantization error, which is ∆/

√
12 = ∆/3.46.

It should be noted that the bound on standard deviation
of ω̂ is a weak function of the frequency parameter ω, and
thus the plot is omitted. However, the amplitude significantly
affects the performance of frequency estimation; as shown in
Fig. 11, higher amplitude results in lower standard deviation
of frequency estimates.

D. Effects of Quantization Step Size

An other parameter that controls the performance of sound
eavesdropping is the quantization step size ∆. We can see
that the accuracy of sound eavesdropping, despite the ability
of the attacker to use helpful interference, can be generally
be degraded by increasing the RSS quantization step size.
Furthermore, the minimum estimation bounds for amplitude
and frequency estimates behave differently with respect to
the RSS quantization step size. In Fig. 12(top), we observe

that the bound for frequency estimates increases linearly with
RSS quantization step size whereas the bound for amplitude
estimate fits a quadratic model with respect to the step size.

E. Effects of RSS Oversampling

Next, we evaluate the effects of sampling rate on the
accuracy sound eavesdropping, particularly in frequency es-
timation. We use ω = 100 Hz, and A = 0.025 dB. In
Fig. 13(left), we plot the bound on the standard deviation of
amplitude estimate as a function of the sampling rate fs. This
bound decreases monotonically with fs for any value of the
quantization step size ∆. The lowest fs in Fig. 13(left) is 1
Hz. This suggests that an eavesdropper attains lower estimation
variance by collecting RSS at higher rate. If it is possible to
increase the sampling rate, the bound shows the possibility
of order-of-magnitude decreases in standard deviation. Similar
results are observed for frequency estimation where increasing
sampling rate decreases the bound on standard deviation of
frequency estimates.

F. Overall Effects

Our CRB analysis shows that the accuracy of RSS-based
surveillance can be controlled mainly by two parameters: RSS
quantization step size and sampling rate at which the RSS
measurement is collected. We numerically analyze the com-
bined effect of oversampling and quantization on RSS-based
sound eavesdropping. Fig. 14(left) shows the lower bound
standard deviations of amplitude and frequency estimates as
functions of quantization step size ∆ and RSS sampling rate
fs. We note from these plots that lower estimation variance
is generally attained with higher sampling rate and low step
size. On the other hand, lower sampling rate and high step size
lead to large estimation variance and hence lower accuracy
in sound surveillance. For example, For a 100 Hz signal
with A=0.025 dB, a quantization step size of 4 dB and
sampling rate of 400 Hz provides 1 dB as the minimum
standard deviation in amplitude estimates, which is too large
compared to the given amplitude. The paper presents the
sound eavesdropping capability of RSS measurements more
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Fig. 14: Contour plot of minimum CRB for (Left) amplitude and (Right) frequency estimates vs. sampling rate and quantization
step size for a 100 Hz signal with amplitude of 0.025 dB.

than previously known. Prior research in sound eavesdropping
relies on fine-grained measurements from software-defined
radio platforms with measurements [11]. However, standard
RSSI measurements are quantized with large step sizes which
deters sound eavesdropping when there is no HI.

We show both theoretically and experimentally that reliable
sound eavesdropping could be obtained using helpful interfer-
ence. An attacker with knowledge of the quantization step size
∆ could force one or more devices to transmit HI to obtain the
optimum interference at the highest sampling rate possible and
achieve reliable sound eavesdropping. These results suggest
the accuracy of an RSS-based sound surveillance attack can
be limited by selecting a large RSS step size and low sampling
rate. A designer could take sampling rate and quantization into
account for systems with critical privacy requirements.

The analysis presented in this article considers single-tone
sound vibrations; however the same mathematical framework
can be extended to study RSS-based eavesdropping of sound
with multiple tones, and other periodic signals such as pulse
and respiration [52].

VII. CONCLUSION

In this paper, we explore the limits on RSS-based eaves-
dropping of sound vibrations. We analyze the capability of
an attacker in estimating the sinusoidal parameters of low-
amplitude sinusoidal signals by deriving the theoretical lower
bound with which an attacker could estimate the rate and am-
plitude of a sinusoid. We show, both theoretically and experi-
mentally, that the adversary could force other wireless devices
to transmit simultaneously in order to improve their estimates.
The numerical values of the lower bound on variance show,
for typical RFICs, an RSS-surveillance attack could be very
accurate. We discuss, as a result, how a device designer could
limit the performance of a potential attack by adjusting the
quantization step size and the sampling rate. Most commercial
transceivers have fixed RSS quantization schemes, however,
a manufacturer could adjust RSS quantization to ensure that
sound eavesdropping attacks are ineffective.
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APPENDIX A
PROOF FOR PARTIAL DERIVATIVES

Given Ck := cos(ωTsk + φ), Sk := sin(ωTsk + φ) and
q ∈ {−1,+1}, then
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