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Never Use Labels: Signal Strength-Based
Bayesian Device-Free Localization in Changing

Environments
Peter Hillyard and Neal Patwari

Abstract—Device-free localization (DFL) methods use measured changes in the received signal strength (RSS) between many pairs
of RF nodes to provide location estimates of a person inside the wireless network. Fundamental challenges for RSS DFL methods
include having a model of RSS measurements as a function of a person’s location, and maintaining an accurate model as the
environment changes over time. Current methods rely on either labeled empty-area calibration or labeled fingerprints with a person at
each location. Both need to be frequently recalibrated or retrained to stay current with changing environments. Other DFL methods
only localize people in motion. In this paper, we address these challenges by, first, introducing a new mixture model for link RSS as a
function of a person’s location, and second, providing the framework to update model parameters without ever being provided labeled
data from either empty-area or known-location classes. We develop two new Bayesian localization methods based on our mixture
model and experimentally validate our system at three test sites with seven days of measurements. We demonstrate that our methods
localize a person with non-degrading performance in changing environments, and, in addition, reduce localization error by 11− 51%

compared to other DFL methods.
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1 INTRODUCTION

W IRELESS sensor networks have opened up many op-
portunities for detecting breaches in physical prop-

erty, for home automation, and for remotely monitoring the
health and activity of home-bound patients. These systems
depend on knowing the location and presence of people
in an area of interest. Previous research has shown how a
person, without an RF tag, can be localized through walls
by processing received signal strength (RSS) measurements
between many pairs of statically deployed RF nodes. This
tag-less based localization technology is known as device-
free localization (DFL) [1].

DFL in indoor environments presents many significant
challenges. First, the links’ RSS are non-stationary in chang-
ing environments. Consequently, DFL methods that require
an empty-area calibration [2], [3], [4], [5] or fingerprint
training [6] will need frequent recalibration or retraining
to adjust to a changing environment. In contrast, online
calibration methods [7], [8] quickly adjust to a changing
environment; yet, they can only locate people while they
are in motion. For real-world installations of DFL, both DFL
types may be unacceptable. For example, a home-bound
patient may find it very inconvenient to leave their home
to provide a DFL system an empty-area calibration period.
They may find it equally inconvenient to retrain their system
by labelling training data with true locations. Also, smart-
home systems must estimate occupancy, not only motion, in
order to control lighting, heating and cooling systems.

One contribution of this paper is that we develop and
validate a localization system that addresses the draw-
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backs of traditional empty room calibration, fingerprint
training, and online calibration methods. The significance
of our contribution is illustrated by stepping through the
installation and unlabelled training process. In our system,
which is built for a single occupant building, nodes are
first installed around the building. After nodes have been
deployed, the occupant walks around in the building during
a system setup period. Alternatively, in the case of the
home-bound patient, the node installer walks around the
building while the home-bound patient remains stationary.
During system setup, unlabelled training data is fed to
the system and used to estimate model parameters. After
system setup is complete, the system localizes the building
occupant. Unlabelled training data continues to be fed to the
system after system setup to adapt to non-stationary RSS
measurements in changing environments, a method we call
continuous recalibration. Using unlabelled training data from
a person naturally moving inside the building provides a
more convenient way of training the system and to locate
both a stationary and moving person.

Other continuous recalibration methods with unlabelled
training were presented in [9], [10]. However, these methods
assumed that an empty-area calibration was performed
before runtime, unlike our methods in which no empty-
area calibration is assumed. In [9, §VI-D], an approach is
proposed in which, instead of performing an empty-area
calibration, it is estimated as a person walks inside the
building, however, the localization performance when using
this idea is not reported. This paper quantifies localization
performance of a method in which a person moving in-
side the building provides unlabelled training data. Our
experiments include intentional and unintentional changes
to the background that allow us to evaluate our algorithms
over time as the environment changes. Further, we note
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that this method is complementary to the developments of
[9], which performs filtering and smoothing to both image
and coordinate estimates to refine the person’s track over a
period of time so that model parameters can be as accurate
as possible. Our method primarily estimates areas where
a person is very likely not located as a means to improve
knowledge of link model parameters.

A second challenge with indoor DFL is that, because
of multipath fading, it is difficult to model the effect of a
person’s location on the measured RSS of a link. With a
fine resolution of fingerprint locations, fingerprint training
can capture this relationship in a particular environment by
measuring the relative frequency of RSS measurements at
each location [11]. While fingerprinting can be very accurate
in localizing people, the fingerprints must be frequently
retrained to stay current in changing environments [12].
Alternative DFL methods like radio tomographic imaging
(RTI) [2], Bayesian methods [13], and particle filters [5],
[14], [15], [16] provide more flexibility for DFL because the
relationship between measured RSS and a person’s location
is modeled a priori.

Fundamental to model-based DFL is that a link is affected,
i.e., has significant measured changes in RSS, when a person
is on the link line. The link line is the imaginary line segment
connecting the link’s nodes. In contrast, when the link is
unaffected, i.e., has very little measured change in RSS, the
person tends to be off of the link line. Model-based DFL
methods have been built around the idea that the link is
affected only when a person is inside an ellipse whose foci
are the nodes of the link [2], [3], [5]. In reality, the link can
be affected even when a person is far from the link line, or
unaffected when a person is on the link line. These model
inaccuracies confound Bayesian DFL methods.

As a second contribution of this paper, we develop a new
mixture model where a link may be affected or unaffected
no matter the person’s position, but with probabilities that
are a function of the person’s distance from the link line.
In our system, we learn RSS distribution parameters for
both the affected and unaffected state of each link and
we do so with unlabelled measurements. The weights in
our mixture model are derived from a spatial model such
that the affected RSS distribution is weighted more when a
person is on the link line and weighted less the further the
person is from the link line.

We incorporate our new mixture model in two Bayesian
localization methods we develop which we refer to as max-
imum likelihood localization (MLL) and hidden Markov
model localization (HMML). These two methods differ from
other Bayesian localization methods [4], [5], [15] by incorpo-
rating randomness in the affected and unaffected state. MLL
and HMML both compute the probability of observing the
measured RSS given a person’s location. Adding a temporal
property to localization, HMML extends MLL by estimating
the current location based on the previous location. In that
both MLL and HMML operate on the same mixture and
spatial models, and only differ in their temporal properties,
we refer to them generally as model-based probabilistic
localization (MPL). However, we differentiate between the
localization method used in MPL as either MLL or HMML.

We experimentally validate HMML and MLL at three
separate sites and with over 7 days of measured RSS data.

We demonstrate that MPL does not need an empty room
calibration or fingerprint training period, that it adapts to
changes in RSS due to a changing background, and that
it is capable of localizing a stationary person. We compare
HMML and MLL to an RTI method which uses empty room
calibration [3], to an RTI method that uses online calibration
[8], and to a Bayesian linear discriminant analysis method
[6] which localizes with the help of a database of labelled
fingerprint measurements. We show that HMML and MLL
can match or decrease the localization error by 11 − 55%
compared to these other DFL methods. Additionally, by
reducing missed detection errors by orders of magnitude
and reducing the false alarm rate by a factor of two to
four, we show that we can track stationary targets despite
changing environments.

2 RELATED WORK

The ability to locate a person indoors using sensors has
changed the way we think about security, home automa-
tion and smart homes, and aging in place. Some of these
sensing systems include: cameras that detect changes in
pixel values caused by a person’s presence [17]; pyroelectric
sensors that detect and locate changes in thermal radiation
due to a person’s presence [18]; and vibration sensors to
localize vibrations from a person walking [19]. Cameras
and infrared sensors cannot sense through material opaque
to visible light, and vibration sensors must be sensitive
enough to detect vibrations on the inside of the home while
ignoring ambient vibrations. Our MPL solution, like other
RF solutions, is a more appropriate choice for whole-home,
through-wall sensing since RF can sense through walls,
smoke, and in any lighting condition.

RF sensing systems perform localization in a variety
of ways. Ultra-wideband radios can be used in multi-
static radar to measure the time-of-flight between pulse
transmissions and received reflections caused by moving
people [20]. The time-of-flight is proportional to the distance
between the reflector and the transmitter and receiver which
is used to localize a person. Ultra-wideband radios have also
been used measure changes in the line-of-sight power and
then perform tomography with those measurements [21]. A
person’s presence has also been shown to create significant
changes in the amplitude of subcarriers in PHY layer mea-
surements of commodity WiFi cards. These changes have
been used in a fingerprint classification method to localize a
person [22].

Our MPL method is complementary to methods that
process RSS to perform DFL including particle filters [14],
[15], fingerprint classification [6], [12], and RTI [2], [3].
These methods, however, either need a person to stand at
several locations, to have the area completely vacant for
a short period [2], [3], [10], [23], or to have the person
continuously moving in order to perform localization [8],
[24]. What sets our work apart is that MPL can perform
DFL without fingerprinting, without a vacant area, and can
localize stationary people.

DFL methods vary in how RSS measurements are used
to estimate location. In fingerprint-based localization, a per-
son stands at many locations in the area of interest while
the statistics of the RSS distributions are recorded [6], [12].
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During testing, the likelihoods or Bayesian probability of
measuring the observed RSS is computed for each finger-
print from which the estimated location is derived. With
enough fingerprint locations, fingerprint-based localization
captures the hard-to-predict RSS distribution of a link as
a function of a person’s location. However, this comes at
an unsustainable cost of frequently retraining fingerprints
to stay current with changing environments. MPL seeks to
provide a highly accurate localization system, like that of
fingerprinting, but by doing so with a model that provides
more flexibility in changing environments.

In RTI methods, a spatial model is assumed which
indicates where a person’s presence will cause a change
in RSS [2], [3]. An image of the most likely locations a
person was is formed based on the change in RSS observed
on the links in the network. A more recent version of RTI
has been developed to learn the parameters of the spatial
model for each link with unlabelled data [9]. Additionally,
the empty room calibration measurements are continuously
recalibrated as a person moves inside the area of interest
to stay current in changing environments. Furthermore, the
change in the RSS on a link is weighted as a function of the
excess path length of the person’s location and the link. MPL
provides an alternative approach to localization by comput-
ing the probability of observing RSS measurements based
on a person’s location. Furthermore, our system performs
continuous recalibration not only when a person is moving
inside the area of interest but also when the area of interest is
vacant. Continuous recalibration in both cases is necessary
to avoid nuisance alarms when the area of interest is vacant.

Another variation of DFL is particle filtering. As in MPL,
particle filters assume RSS distributions, one for when a
person is on a link line, and one for when they are off of
the link line [4], [5], [14], [15], [16]. Particles are then drawn
from a Gaussian distributions and are said to be drawn
from the affected RSS distribution when their excess path
length to a link are less than some threshold. Otherwise
they are drawn from the unaffected RSS distribution. MPL
differs from this approach in that we do not place 0 or 1
weights to the affected and unaffected RSS distribution, but
soft weights that are a function of the person’s excess path
length to a link. This approach inserts some uncertainty in
the model to account for the reality that a link may not be
affected even when a person is standing on the link line or
that a link is affected when the person is far from the link
line. As another point of differentiation, our methods, unlike
[4], [5] actually implement and validate a method that tracks
both a stationary target and a target in motion without using
labelled calibration data.

3 METHODS

In this section, we describe the fundamental components
of MPL generally and of MLL and HMML specifically. The
components of MPL are shown in the block diagram in Fig. 1
and include: a one-time estimation of the weights of the
mixture models that relate RSS to an occupied location; a
lightweight online RTI method that runs in tandem with
either MLL or HMML to provide a location of a moving
person; a continuous recalibration block that continuously

Fig. 1. Block diagram of model-based probabilistic localization (MPL)

re-estimates the parameters of the links’ affected and unaf-
fected distributions; and a block where MLL or HMML is
implemented. MLL and HMML compute the probabilities
of observing the RSS measurements on the links given the
person’s location. We describe each of these components in
more detail in the following sections.

3.1 Equipment and Measurements
In this paper, our wireless measurements are made using
Texas Instruments CC2531 dongles that communicate using
IEEE 802.15.4 in the 2.4 GHz ISM band. We deploy N nodes
around the area of interest. The nodes are programmed
to take turns transmitting a packet on a 802.15.4 channel
during dedicated time slots using TDMA and a token-
ring passing protocol [25]. This protocol is repeated on a
predefined set of 802.15.4 channels.

As each node transmits on each channel, a separate node
logs the RSS, also called the received power in decibel units,
between each pairwise node. We denote the RSS measured
on link l = (i, j, c) formed by transmitting node i and
receiving node j on channel c as rl. The RSS is typically
a discrete-valued measurement, and we denote its possible
values as Sr. Sr also includes �, the event that there was
a missed packet and as such RSS was not measured. We
observe a vector r = [r1, r2, . . . , rL] on L links.

3.2 Mixture Model
As in many model-based DFL methods, MPL adopts the
idea that a link is either in an affected state or an unaffected
state [13], [15], [16]. However, the novelty in this model
is that, given the person’s location, the state of the link is
not known a priori. In contrast, some models state that a
link deterministically is affected when a person is present
in an ellipse whose foci are the node coordinates of the
link and is unaffected when the person is outside of the
ellipse [2], [3], [7], [15]. Another model states that a person’s
presence in a voxel intersected by the link line causes the
link to be deterministically affected [26]. However, by virtue
of the random nature of the multipath radio channel, any
deterministic model for the state of a link as a function of
person location is bound to be inaccurate. Further, if pixels
are large (to keep computation time low), there may be,
within the pixel, positions in which the person affects a
link as well as positions in which they do not affect it. We
develop a mixture model that places some uncertainty on
the whether a link is affected or unaffected by a person’s
presence in a pixel.

Our mixture model follows the diagram shown in Fig. 2
First, assume that a person is present at one of P + 1 grid
coordinates xgridk for pixel k ∈ {0, . . . , P}. In one time step,
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Fig. 2. Bayesian graphical model

a person can transition from one grid point to any other
grid point that can be reached by a person moving at the
maximum assumed velocity (we use 3 m/s unless otherwise
stated). While a person is located in pixel k, a link l has
a state sl ∈ {a, u} where a is the affected state and u is
the unaffected state. Our link state probability, given the
person’s location, is denoted p(sl | k). The probability a link
is affected is an exponentially decaying function of excess
path length

p(sl = a | k) = βl · e−δl,k/λl (1)

where the excess path length of location k with respect to
link l is δl,k = d(xgridk ,xtxl ) + d(xgridk ,xrxl ) − d(xtxl ,x

rx
l ),

where d(x,y) is the Euclidean norm between x and y,
xtxl is the coordinate of link l’s transmitter, xrxl is the
coordinate of link l’s receiver, and βl and λl are parameters
we will estimate (see Section 3.5). The probability that
a link is unaffected by a person standing in pixel k is
p(sl = u | k) = 1− pl(sl = a | k).

If a link is affected, the RSS on link l, rl, is generated from
the conditional distribution p(rl | sl = a). The probability
of observing rl in the affected state is weighted by p(sl = a |
k), the probability that the link is affected given the person
is standing in pixel k. If a link is unaffected, rl is randomly
generated from the conditional distribution p(rl | sl = u).
The probability of observing rl in the unaffected state is
weighted by p(sl = u | k). Via Bayes’ Law, we can see that
rl given a person at position k is generated from the mixture
model

p(rl | k) =
∑
s′=a,u

p(sl = s′ | k) · p(rl | sl = s′). (2)

Assuming link RSS measurements are independent, the
likelihood that the person is in pixel k given r is

pk(r) =

L∏
l=1

p(rl | k). (3)

However, this product may not be able to be represented by
modern computers when L is large. To avoid these issues,
we compute log probabilities first and then convert them
back into probabilities as pk(r) = exp {

∑
l log p(rl | k)− ψ}

where ψ = maxk
∑
l log p(rl | k). For MLL, the estimated

location of the person is found from

x̂mll = arg max
0≤k≤P

pk(r). (4)
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Fig. 3. Distribution of RSS on one link when a person is inside or outside
an ellipse whose foci are the transmitter and receiver coordinates of a
link. This link represents the behavior of the majority of links.

The HMML solves for the most likely location given
a history of r observations by inductively computing a
forward probability vector, αk[t], at time t for each grid
coordinate k = {0, . . . , P}. The value of αk[t] is the joint
probability of current state k and all link RSS measurements
r through time t [27]. The HMML estimates the current
location of the person as

x̂hmml[t] = arg max
0≤k≤P

αk[t]. (5)

The probability that the initial pixel of the person is k
is denoted πk. The forward algorithm initializes αk[1] =
πkpk(r[1]) where r[1] is the first measured RSS vector, and
then computes αk[t+1] =

[∑P
w=0 αw[t]pwk

]
·pk(r[t+1]) for

each t > 1 and for 0 ≤ k ≤ P where pwk is the probability
that a person transitions from pixel w to pixel k in one
time step. For reference, the grid coordinates are evenly dis-
tributed. One coordinate represents the out-of-the-area coor-
dinate which we denote xgridP = [∞,∞]. For this out-of-the-
area coordinate, we manually set pl(a | xgridP ) = 1× 10−3.

3.3 Conditional RSS Distributions
In this work, we have adopted the idea that a link is either
in an affected or unaffected state. We perform our own
experiments to support this claim. In this experiment, a
person walks around a room at known times and at known
coordinates while we record RSS measurements. We show
in Fig. 3 one link’s distribution of RSS when a person is far
from the link line and when the person is on or near the
link line. While the RSS does not assume these distributions
in all cases, we use this link to represent the behavior
of the majority of links. The affected and unaffected RSS
conditional distributions can be modeled as skew-Laplace
[15], or Ricean [28], but we sacrifice model accuracy by using
a Gaussian model for simplicity. A normal distribution for
RSS in decibel units has also been adopted in [6], [16]. The
mean and variance of the unaffected distribution we denote
as µl,u and σ2

l,u where the subscript u specifies unaffected.
The mean and variance of the affected distribution we de-
note as µl,a and σ2

l,a where the subscript a specifies affected.
For link l, we estimate the mean and variance of both

distributions using RSS measurements when there is ev-
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idence that the link is unaffected. We describe in Section
3.7 how we decide when RSS is measured when the link is
unaffected, but for now, we create a FIFO buffer of length B
for link l. When a link is unaffected, we add rl to the buffer.
When a measurement is added to the buffer, we compute
both the sample mean and the sample variance of the buffer
which we save as µ̂l,u and σ̂2

l,u respectively. When there are
no changes to objects in the background environment, we
anticipate µ̂l,u to be about the same as µl,u. So, we only
perform the update µl,u ← µ̂l,u and σ2

l,u ← σ̂2
l,u when

|µl,u − µ̃l,u| > 1 dBm.
From Fig. 3, we also observe that the mean of the

unaffected histograms is a few dBm greater than the affected
histogram’s mean. Also, the variance of the affected his-
togram is larger than the unaffected variance. In our model,
we use these observations to also estimate the mean and
variance of the affected distribution by µl,a ← µ̂l,u −∆ and
σ2
l,a ← ησ̂2

l,u. We have found that ∆ = 3 dBm and η = 2.5
are appropriate parameters to use for indoor settings. We
also note that to estimate σ̂2

l,u, we use the maximum of
the sample variance of the buffer and a minimum constant
ω2 > 0. Due to quantization of RSS, the sample variance
may be zero even though the true real-valued received
power would have had a positive variance. We impose a
minimum variance of ω2 > 0 to avoid numerical instability.
We have found that ω = 0.75 is an appropriate value for
this application.

In reality, the effects of multipath fading would mean
each link would have a unique ∆ and η instead of the fixed
value we use. Although fixed in this paper, the values of ∆
and η for all links captures the general RSS response, which
is a drop in RSS and an increase in variance, when a person
is nearby the link line. The choice to estimate each link’s
∆ and η from noisy target location estimates would add
another layer of high-dimension estimation which we chose
not to explore in this paper.

When the mean and variance of a link’s unaffected and
affected distributions have been re-estimated, we recompute
their RSS mass functions as

p(rl | u) =

{
ε, rl = �
max

{
ε, 1γN (rl;µl,u, σ

2
l,u)

}
, rl 6= �

(6)

and

p(rl | a) =

{
ε, rl = �
max

{
ε, 1γN (rl;µl,a, σ

2
l,a)

}
, rl 6= �

(7)

where γ is constant such that the pdf (probability distribu-
tion function) sums to one, and ε > 0 is a small-valued lower
bound on the probability value away from zero. The use of
the minimum probability ε is due to the fact that, in practice,
we may observe values far from the mean more often
than described by equations (6) and (7) because temporal
fading does not always fit the log-normal distribution [29].
Using a small value ε conveys the model uncertainty and
avoids numerical issues with very low probabilities in the
likelihood computations. We use 1× 10−5 in this work.

3.4 Spatial Model
In Section 3.2, we cited previous work that modeled the
affected and unaffected state of the link as deterministic.
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Fig. 4. The absolute difference between the mean RSS during empty
room and the mean RSS when a person occupied each square. Red
squares represent an absolute difference of 2 dBm or less. Blue squares
represent an absolute difference greater than 2 dBm. The white squares
were never occupied. The nodes and link line are shown in orange.

Our choice for using a decaying elliptical model instead
is based on an experiment that we perform in an empty
classroom. In this experiment, a person moves inside many
1.22m2 areas for 30 seconds each, during which time RSS
for many links are measured and recorded. An additional
30 seconds of RSS is recorded when the person is not in
the area of interest. In post-processing, we find the mean
RSS for each link and for each location the person occupied,
including when the person stood outside the area of interest.
In Fig. 4, we show the absolute difference in mean RSS when
a person occupies each 1.22m2 area and the mean RSS when
the area of interest in vacant for link l. We threshold the
image so that the absolute differences that are greater than 2
dBm are shown in blue, and smaller differences are shown
in red. White squares are never occupied.

What Fig. 4 shows is which areas experience a change
in mean RSS when a person occupies the area. In Fig. 4,
we observe that, in general, areas near the link line tend to
result in a decrease in RSS. Areas that are further away tend
to experience small differences in RSS. However, we also
observe that some locations show no measured change in
RSS even when the person is on the link line. Additionally,
when a person is very far from the link line, the link’s RSS
can significantly change in mean. A simple elliptical model
does not capture the uncertainties due to multipath fading.
The spatial model in equation (1) creates some uncertainty
in our mixture model so that there is always a small but
significant probability that an RSS measurement was drawn
from either the affected or unaffected conditional distribu-
tion. When the person is near the link line, the affected
distribution is weighted more heavily than the unaffected
distribution. The choice of βl and λl gives us some control
over how the weights in the model are selected so that we
can adjust to the different fading characteristics of each link.

3.5 Estimating Spatial Model Parameters
In this section we describe how we estimate the mixture
model parameters βl and λl for each link l. To accom-
plish this, our goal is to estimate βl and λl such that
our mixture model closely matches the distribution of RSS
measurements as a function of the excess path length of
the person’s location and link l. This estimation process
refers to the KRTI and parameter estimation block seen
in Fig. 1. KRTI is an online DFL method that does not
require an empty room calibration period [8]. We choose
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KRTI because of its relatively low computational complexity
and its highly accurate localization capability. KRTI updates
a long and short term RSS histogram with every new RSS
measurement. The difference between these two histograms
is computed using the kernel distance. The differences from
all of the links are then used to form an image and estimate
the location of a person. During a training period a person
walks inside the area of interest. During this time, KRTI
provides an estimated location, x̂krti, for each rl. We store
all < rl, δ

krti
l > tuples where δkrtil is the excess path length

between x̂krti and link l.
After the training period is complete, we first estimate

the mean and variance of the unaffected distribution using,
respectively, the median and median absolute deviation
(MAD) of the RSS during the training period. We use these
statistics to estimate the mean and variance of the unaffected
RSS distribution. The median and MAD ignore RSS mea-
surements that fall far from the true unaffected mean and
robustly estimate the mean and variance. Additionally, we
multiply the MAD by 1.48 and square the value to make
it an estimate of the variance for Gaussian data [30]. Once
the unaffected mean and variance have been estimated, we
apply the same shift to the mean and scale to the variance to
get the affected mean and variance as described in Section
3.3.

Instead of basing the affected distribution parameters on
the unaffected distribution parameters, an algorithm could
discriminate between times when a link is in either the
affected or unaffected state and then directly estimate the
parameters for the affected and unaffected state. However,
we choose to not pursue this approach because it would
require a long training period to ensure that there were a
sufficient number of RSS measurements from each state to
estimate the distribution parameters. Additionally, a person
may not be physically capable of reaching locations where
they would be affecting a link, and therefore, there would be
no RSS measurements to estimate the affected distribution
parameters.

After the training period is complete and the affected
and unaffected RSS distribution parameters are estimated,
we turn to the RSS, excess path length tuples previously
mentioned. An example of the tuples for one of the links
is shown in Fig. 5. We next divide rl into bins according
to excess path length δkrtil . We choose to bin all tuples
< rl, δ

krti
l > into groups such that their excess path lengths

are equal. The possible ordered bin values are in the set
{δkrtil (0), . . . , δkrtil (M −1)} where M is the total number of
bins. The RSS measurements for one group of these tuples
are seen in the grey box in Fig. 5 and the histogram of these
RSS measurements is shown in Fig. 6. We denote the his-
togram of the RSS measurements whose excess path length
is δkrtil (m) as hl,m where index m indexes in the set of all
excess path lengths. We wish to find bl,m such that the mix-
ture model p(rl | bl,m) = bl,m ·p(rl | a)+(1−bl,m) ·p(rl | u)
most closely matches hm. To do this, we perform

b∗l,m = arg min
bl,m∈Sb

‖p(rl | bl,m)− hl,m‖ (8)

where Sb is a set of equally-spaced real valued numbers
between 1× 10−5 and 1 and ‖∗‖ is the `2-norm. An example
optimal mixture model is shown in in Fig. 6.

m
)

Fig. 5. Measured RSS as a function of excess path length, computed
using the estimated location from the KRTI block seen in Fig. 1. One
group of RSS measurements with the same excess path length is shown
in the gray box.
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is found using equation 8 for this histogram and is overlaid.

By performing this process for all excess path length
bins, we get the tuples < δkrtil (m), b∗l,m >. We plot these
tuples for a link in Fig. 7. The relationship between b∗l,m
and δkrtil (m) follows our spatial exponential decay function
in equation (1). We estimate βl and λl from a nonlinear
least squares solution. The estimation includes constraining
0 < βl < 1 to keep the conditional probabilities between 0
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Fig. 7. Optimal probabilities b∗ as a function of excess path length. The
estimated spatial model is overlaid.
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and 1 and λl > 0 so that a link is always more likely to be
affected by a person on or near the link line over a person
far from the link line. After βl and λl are estimated, we
do not re-estimate them in this paper and consequently no
longer run KRTI. However, re-estimation can be optionally
performed at any later time as desired.

3.6 Initial and Transition Probabilities for HMML
A hidden Markov model includes a transition matrix which
defines the probabilities of transitioning from one state to
another in one time step. In our model, we incorporate
the physical constraints of walking inside a building, like
walking speed and fixed barriers, into our transition prob-
abilities. To do this, we first label each grid coordinate as
either an entrance-exit or as a non-entrance-exit coordinate.
Entrance-exits are locations in the area of interest where a
person can enter or exit the area of interest. Second, for each
grid coordinate, the grid coordinates that are≤ 0.75 m away
are labelled as neighbors. For entrance-exit states, we in-
clude the out-of-area grid coordinate as a neighbor since the
only way to leave the area of interest is via an entrance-exit.
For the out-of-area grid coordinate, we label the entrance-
exit states as neighbors. However, a grid coordinate cannot
be a neighbor if a person must travel through a wall to get
to that grid coordinate. Third, we assume that a person is
more likely to stay at the current grid coordinate than to
transition to another.

For transition probabilities, the probability of remaining
in the same grid coordinate after one time step is set to 0.9
for all states. For all non-neighbor grid coordinate, we assign
a probability 10−200. We found that 10−200 was the closest
value to 0 we could use without encountering numerical
representation issues when computing the forward proba-
bilities. This value also gave some, but very little probability,
of a target reaching any other state in one time step. For
all neighbor grid coordinate, we assign a equal probability
so that the sum of probabilities of transitioning from the
current grid coordinate to any other grid coordinate equals
1. We note that wall and entrance-exit information is extra
information required to create these transition probabilities.
Consequently, we will show in Section 5.4 how HMML’s
localization performance is affected if we ignore wall and
entrance-exit information.

A hidden Markov model also includes the probability
πk that the Markov chain starts in grid coordinate xgridk . We
assume that when the system turns on, the person is located
outside of the area of interest with probability 0.95. All other
initial state probabilities are assigned 0.05/P .

3.7 Continuous Recalibration
An important element of MPL is that it does not use an
empty room calibration period, nor a fingerprint training
period, to estimate the mean and variance of the affected
and unaffected RSS distributions. Instead, MPL uses unla-
belled training data when a person is moving inside a build-
ing, a feature we believe adds convenience in deploying a
DFL system. Furthermore, MPL is capable of adapting to
non-stationary RSS distributions. We enable these features
of MPL by running a light weight companion localization
method called VRTI [7]. Using online calibration, VRTI

localizes motion by computing the sample variance of a
buffer of RSS for each link. The sample variance for each
link is used to form an image of the motion, from which we
estimate a person’s location. We denote the location estimate
from VRTI as x̂vrti.

The purpose of running VRTI in tandem with MPL is
that VRTI can localize a moving person in spite of a chang-
ing environment. With VRTI’s location estimate, we not only
know where the moving person is located but also where
they are not located. Here, we are assuming our system
is used in a home with a single occupant. If no person is
near a link, we can safely update that link’s RSS unaffected
distribution parameters. We say that x̂vrti is far from a link
if the excess path length of x̂vrti with respect to link l, which
we denote δvrtil = d(xvrti,xtxl )+d(xvrti,xrxl )−d(xtxl ,x

rx
l ),

is greater than δmaxl /2 where δmaxl is the maximum excess
path length of any coordinate in xgridk for k ∈ {0, . . . , P −1}
with respect to link l. When δvrtil > δmaxl /2, we add rl to
the B-length FIFO buffer referred to in Section 3.3.

In as much as VRTI is unable to distinguish between
a stationary person and when the area of interest is vacant,
the RSS distribution parameters won’t be re-estimated when
the person is stationary or when a person is outside of
the area of interest. However, it is important to update
the RSS distributions when the area of interest is vacant.
To re-estimate the RSS distribution parameters when the
area of interest is vacant, we add rl to the B-length buffer,
if it has not been added already, when HMML or MLL
says the area of interest is empty, i.e. when k = P is the
solution to arg max0≤k≤P αk or arg max0≤k≤P pk(r). The
mean and variance of the buffer is then used to periodically
re-estimate the distribution parameters for both a link’s
unaffected and affected state as described in Section 3.3.
With both the location estimate of VRTI and HMML or MLL,
we are able to perform continuous recalibration without an
empty room calibration period. We found that B = 15 was
an appropriate buffer length for our application.

As an example of how we perform continuous recalibra-
tion, we show in Fig. 8 the measured RSS on a link before
and after a couch nearby is moved 15 cm. After the couch
is moved at 2550 s, the unaffected RSS increases by 6 dBm.
We also show µu for the link during this time period as it is
re-estimated. After a few minutes, our unaffected mean RSS
estimate adjusts to the increase in RSS due to the changing
environment.

3.8 Method Summary

There are several components to our methods and so we
summarize the major points here so that the reader can gain
a high level understanding of the algorithm.

The algorithm begins with an unsupervised training
period that is performed once. While a person walks around
the whole space for several minutes, a history of x̂krti

location estimates and RSS measurements are saved (see
Section 3.5). After the training period is complete, the his-
tory of x̂krti location estimates and RSS measurements are
used to estimate βl and λl for each link (see Section 3.5).
The estimated βl and λl values are then used to compute
p(sl = a | k) and p(sl = u | k) using (1) in Section 3.2.
Though not part of the unsupervised training, the transition
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Fig. 8. Measured RSS on a link before and after a couch is moved at
2550 s. The unaffected RSS mean changes by 6 dBm. The red line
shows how our continuous recalibration eventually adjusts the estimate
of the unaffected mean after environment changes.

probabilities used in HMML are also computed just once
(see Section 3.6).

After the unsupervised training has been completed, one
of the MPL methods is used to perform location estimation.
For every new measurement r, the likelihoods are updated
using (2) and (3) in Section 3.2. The likelihoods are then used
to update the MLL or HMML location estimate (see Section
3.2). In addition to updating the MPL location estimate, a
new r measurement is used to get a new VRTI estimate x̂vrti

(see Section 3.7). Both x̂vrti and x̂mpl location estimates are
then used to update µl,u, µl,a, σ2

l,u, and σ2
l,a which are used

in (6) and (7) described in Section 3.3.

3.9 Baseline DFL Methods

To demonstrate the advantages of MPL, we compare HMML
and MLL with other DFL methods that lack the same
advantages. One of these methods is attenuation-based RTI
which we refer to as RTI [3]. RTI requires an empty room
calibration where the mean RSS for each link is computed
and stored. The absolute difference between r and the mean
RSS is computed and stored as yrti, which is in turn used
to compute an image and estimate the person’s location.
The second method is kernel-based RTI which we refer to
as KRTI [8]. KRTI continuously updates a long and short-
term RSS histogram. The kernel distance between these
histograms are then computed and stored as ykrti, from
which the image and the person’s location is estimated. For
both RTI and KRTI, we use an elliptical model for the weight
matrix W [2]. A regularized-least squares solution is then
used to estimate the image z using the linear relationship
y = Wz + ñ where ñ is the noise. The pixels in the image,
z, for both RTI and KRTI map to the same grid coordinates
xgridk for k = {0, . . . , P − 1} mentioned in Section 3.2. We
use the pixel with the greatest value as the location estimate,
which we denote x̂rti for RTI and x̂krti for KRTI. However,
when the image maximum falls below a threshold, we set
the location estimate as the out-of-the-area pixel xgridP . We
note that MPL also uses KRTI to estimate spatial parameters,
but the baseline KRTI mentioned in this section is separate
from KRTI used in MPL. After this point, we distinguish
between the two when needed.

The last method is a linear discriminant analysis classi-
fier, which we refer to as LDA, that requires RSS fingerprints

at many locations [6]. During fingerprinting, a person moves
inside of a small area around a known location. The mean
RSS of all L links is recorded for fingerprint location index
k′ and stored as µldak′ where k′ = {0, . . . ,K ′}, K ′ + 1 is
the total number of fingerprints. The covariance of the RSS
over all fingerprint locations, Σ̂, is then estimated using
Ledoit-Wolf shrinkage as Σ̂ = (1 − ν)Σ′ + νρI where
Σ′ =

∑K′

k′=1

∑K′

t∈classk′(r[t]−µldak′ )(r[t]−µldak′ )T /(T −K ′)
and T is the number of RSS measurement vectors measured
during fingerprinting. Ledoit-Wolf shrinkage is a traditional
way to estimate a covariance matrix when the number of
samples used for estimation is small but the number of
variables to estimate is high. We find ourselves in this
situation since the number of measurements we record at
each fingerprint tends to be small. Finally, we find the k′

that maximizes rT Σ̂
−1

µldak′ −0.5µldak′
T
Σ̂
−1

µldak′ which gives
us our location estimate x̂lda.

4 EXPERIMENTATION

In this section, we describe the three test sites we used to
evaluate the localization performance. We also describe the
localization metric used for the evaluation.

4.1 Test Sites
In our evaluation, we perform experiments at three different
test sites. At each site, we first collect a training data set
which we use to perform supervised fingerprint training
for LDA and to perform unsupervised estimation of βl and
λl for each link in MPL. Additional testing data sets are
then performed. Both training and testing data sets include
the known location of the person moving through the area.
Experimentation at each test site was performed differently,
so we describe each test site individually. The floorplans for
each site are shown in Fig. 9.

There are differences in the number of frequency chan-
nels measured for each site. We programmed the nodes
for two of the sites to use four frequency channels. The
data for the third site was collected by other experimenters
and they chose to measure eight frequency channels. We
chose to measure on four to have a higher sampling rate. In
our algorithms, all channels measured are used in the DFL
methods.

4.1.1 Classroom
Our first test site, which we refer to as site CR, is an empty
classroom. We deploy twenty nodes, which measure on four
channels, on the inside perimeter of the classroom such that
a majority of the links are line of sight. It takes the protocol
0.24 s to get an RSS measurement for each link and channel.

A total of 30 s of RSS are collected for fingerprints at 100
locations spaced 0.61m apart. At each fingerprint location,
the person moved inside a 0.61m2 before moving to the
next fingerprint location. The total duration of the training
experiment was 55 min.

During the testing experiments, the room was vacant
for the first minute. A person then entered the room and
continuously moved to each fingerprint location at least
once. A total of twelve test experiments were performed.
No objects inside the room were intentionally moved at any
time during the training and testing data sets.
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Fig. 9. Experiment locations where the walls or barriers are shown in black and the nodes are shown as red circles. The red dashed lines indicate
where entrance-exits are located for (left) class room, (middle) first floor, and (right) basement.

4.1.2 First Floor
The second test site, which we refer to as site 3F, is the
furnished first floor of a home. Thirty nodes are deployed,
which measure on eight channels, on the inside perimeter
of the house. It takes the protocol 0.82 s to get an RSS
measurement for each link and channel. A pair of nodes
are attached to a tall stand such that the nodes are 0.3 and
1.3 m above the floor.

RSS Fingerprints are collected at thirty-two locations in
the house. During the testing experiments, the house was
vacant for the first 50 s. A person then entered the house
and moved to the first fingerprint location, standing there
for 50 s. After the 50 s elapsed, the person moved to the next
fingerprint location where the process continued. The same
procedure was followed for the test experiments except that
the person stands at each location for 20 s.

After the training experiment and each testing experi-
ment, an intentional change to the house was made. For
example, a couch was moved, a washer lid was shut, or a
sink was filled with water. These intentional changes were
performed to simulate the passage of time in a typical house
where objects are moved, added, or removed from the area
of interest. We note that this training and testing data set
was originally created and used in [12].

4.1.3 Basement Living
Our last test site, which we refer to as site BL, is a furnished
basement. We deploy fifteen nodes, which measure on four
channels, on the inside perimeter of the area of interest. It
takes the protocol 0.53 s to get an RSS measurement for each
link and channel.

During the training experiment, a person continuously
moved around the basement at known locations at known
times. For fingerprinting, we create several reference loca-
tions that serve as the fingerprint location since the person
was moving for the duration of the training period.

During the testing experiments, the basement was va-
cant for the first minute. A person then entered and contin-
uously walked around the basement. However, the person
also reclined on a bed, and sat in an armchair, on a couch,
and in a chair for 2 min each at different points during
the experiment. This was done to show how DFL methods
with online calibration lose track of a stationary person. RSS
measurements were recorded for 24 h for seven days. We
divide each day into an individual experiment. Each day, a
person’s ground truth location was recorded for 14 min for

performance evaluation. During the seven days, the person
performed normal day-to-day tasks and activities, including
moving furniture and adding, moving or removing other
household items in the area.

4.2 Localization Accuracy
The DFL methods we evaluate produce a location estimate
for each time t. These methods can also indicate that the
area of interest is vacant. To evaluate each DFL method, we
compute the localization error at time t as

e[t] = d(x̂[t],xtrue[t]) (9)

where xtrue is the true location coordinate, x̂[t] is the
estimated location coordinate from one of the localization
methods, and d(x̂[t],xtrue[t]) is the Euclidean distance be-
tween the true and estimated location. We then compute the
median of e[t] for all t and call it the median Euclidean error
emed.

5 RESULTS

In this section, we discuss the localization performance of
MLL and HMML and our baseline DFL methods, RTI, KRTI,
and LDA. We show how MLL and HMML outperform all of
the baseline methods at three different sites, how MLL and
HMML robustly localize moving and stationary people, and
how MLL and HMML adapt to changing environments. We
then make intentional modifications to MLL and HMML
and show how their localization performance is affected.

5.1 DFL Method Comparison
For each of the three test sites, we show the median error,
emed, for MLL, HMML, and the baseline DFL methods in
Fig. 10. For all sites, MLL and HMML outperform or match
the baseline methods in localization accuracy. At sites 3F
and BL, where there were considerable changes to the envi-
ronment, MLL and HMML reduce emed by 51% or greater
when compared to RTI and LDA. Since the environment
changes often at site 3F, RTI and LDA’s empty room and
fingerprint calibration methods become outdated, resulting
in poor performance over time. When the environment does
not change, like in the CR experiments, RTI and LDA’s
localization performance closely matches MLL, HMML and
KRTI. However, an unchanging environment, like at site CR,
is not likely to exist in most applications.
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achieve less than 1% missed detection error which is two orders of
magnitude lower than what was achieved by KRTI and LDA. HMML and
MLL were also able to achieve a false alarm rate that was two or more
times as low as LDA and RTI.

In contrast, we observe that MLL reduces the median
error by up to 13% and HMML by up to 11% compared to
KRTI at the three sites. While this reduction in error seems
small, it is important to recognize that it becomes more
challenging to make significant reductions in error when
the errors are already considerably low given the size of the
site areas, the number of nodes deployed, and the spatial
diversity of the nodes. Additionally, MLL and HMML have
the advantage of localizing stationary people, a feature that
is missing in KRTI and other online DFL methods.

5.2 Tracking Stationary People Evaluation

To evaluate each method’s ability to localize a stationary
target, we show the missed detection and false alarm errors
incurred by each method for the BL site in Fig. 11. We show
just the results for the BL site since we deliberately included
times when the person was stationary during the test.

HMML and MLL both achieve lower missed detection
rates than LDA and KRTI by two orders of magnitude. A
lower missed detection rate is desirable because it means
that the method is better able to localize a stationary target.
Interestingly, RTI achieved the lowest missed detection rate.

2 4 6 8 10 12 14
Experiment Number

40

60

80

100

120

140

160

180

M
ed

ia
n 

Er
ro

r (
cm

)

HMML
RTI
KRTI

Fig. 12. Median error for each of the sixteen test experiments performed
at 3F. Intentional changes to the environment were made after each
experiment. HMML and KRTI adjusts to these changes.. RTI gradually
suffers in localization performance as the empty room calibration mea-
surements diverge from measurements made when the system turned
on.

However, it also suffered from a 54% false alarm rate which
is more than two times as great as MLL and HMML’s rate.
Overall, MLL and HMML achieve the best missed detection
rate without sacrificing on their false alarm rate.

We note that the false alarm rates for all five DFL
methods are very high. One reason for this is because there
were few samples when the person was not in the area
of interest. As such, falsely detecting even a few of those
samples as presence raised the false alarm rate. Had we
collected more samples during which the space was vacant,
we anticipate that the false alarm percentages would reduce
significantly. A second reason why the false alarm rates
are high in general for each DFL method is becuase we
chose to weight the risk of loosing track of a stationary
person higher than falsely detecting a person’s presence.
We also desired to have a low localization error. Both of
these factors influenced parameter selection and naturally
increased the false alarm rate. However, we felt these design
choices would be useful in elder care applications when it is
more important to keep track of where a person is inside a
space while allowing for some false alarms.

5.3 Continuous Recalibration Evaluation

Another important feature of MLL and HMML is that it
can robustly localize a person even in changing environ-
ments. We show an example of localization performance
in changing environments in Fig. 12. The median error is
shown for RTI, KRTI and HMML for each of the fifteen
test experiments at site 3F. Again, MLL’s performance is
similar to HMML, and we therefore did not want to clutter
the figure by including MLL’s results. We exclude LDA’s
results since its large errors make it difficult to see the
differences between HMML and KRTI. HMML, KRTI, and
RTI perform equally as well for the first experiment since
RTI’s empty room calibration measurements are current.
With each successive experiment, intentional changes are
made to the environment. As a result, RTI’s localization
error increases, even doubling by experiment five. Without
frequent empty room calibration, RTI is unable to provide
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Fig. 13. Median error for each of the seven test experiments performed
at BL. Changes to the environment after each test were the result
of day-to-day living. HMML adjusts to these changes with continuous
recalibration. RTI and LDA gradually suffers in localization performance
as the empty room and fingerprint calibration measurements become
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a reliable location estimate. On the other hand, HMML,
as well as KRTI, robustly localizes the person in spite of
a changing environment. These same observations can be
seen in Fig. 13 which shows the median error for each of the
seven test experiments at site BL.

5.4 MPL Feature Evaluation

In this section, we intentionally modify parts of MLL and
HMML to see how localization is affected. We make the
following four modifications to HMML and MLL.

• First, we fix λ and β for all links instead of estimating
them. The values for λ and β are set to achieve
the lowest localization error. We call this modifica-
tion FIXED. We perform this modification for both
HMML and MLL.

• Second, we use the true location xtrue instead of
xkrti to estimate λ and β in the spatial model
parameter estimation block in Fig. 1. We call this
modification TRUE and make the modification for
both MLL and HMML.

• Third, we ignore wall and entrance-exit information
when creating the transition probabilities. We call
this modification NO WALL but only apply this to
HMML since MLL does not use transition probabili-
ties.

The unmodified MLL and HMML we call BASELINE. Only
one modification is made to MLL and HMML at a time. For
each modification, we perform localization using the data
from each site and show the results for MLL in Fig. 14 and
for HMML in Fig. 15.

With the FIXED modification, we eliminate the KRTI and
parameter estimation blocks as seen in Fig.1. In their place,
λ and β are tuned by the user and, consequently, MLL and
HMML are ready to run when the system starts. There is no
need for any calibration. As seen in Fig. 15, setting all spatial
parameters to be the same value for all links increases the
median error for HMML by 7 cm at site 3F, reduces the error
by 1 cm at site CR, and reduces the error by 9 cm at site BL
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Fig. 14. Median error for MLL at three different experiment sites. In
FIXED, we use the same λ and β parameters for all links. In TRUE,
the true location xtrue is used instead of xkrti to estimate λ and β.
BASELINE indicates no modification.
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Fig. 15. Median error for a modified HMML at three different experiment
sites. In FIXED, we use the same λ and β parameters for all links. In
NO WALL, we ignore wall and entrance-exit information when creating
the transition probabilities. BASELINE is HMML without modifications.
In TRUE, the true location xtrue is used instead of xkrti to estimate λ
and β.

when compared to BASELINE. From Fig. 14, we observe
that setting all spatial parameters to be the same value for
all links increases the median error for MLE by 4 cm at site
3F, 5 cm at site CR, and reduces the median error by 4 cm at
site BL when compared to BASELINE.

Our first observation is that there are cases when per-
forming a calibration for MLL and HMML actually lead to
poorer performance than if a fixed set of parameters were
applied. We suspect that there are environments where the
estimated location provided by the KRTI block of MPL has a
high error which leads to less accurate estimated system pa-
rameters. The convenience of the unsupervised calibration
may be worth a slight loss in localization accuracy.

With the TRUE modification, we require the user to
provide labelled RSS data with their true location dur-
ing the training phase. We wish to see if having labelled
training data would improve the estimation of the spatial
parameters, and, in turn, improve localization. From Fig. 15
and Fig. 14, we observe that at all three sites, supplying
labelled RSS data matches or decreases localization error
for MLL and HMML when compared to BASELINE. The
improvement to localization performance can be as great
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as 6 cm. The user may decide that the performance gains
are too small to warrant having to provide labelled RSS
data. However, the trade off is the additional computational
overhead needed to run KRTI for the location estimates.

Finally, with the NO WALL modification, we eliminate
the need for extra wall information to be entered into
HMML prior to operation. From Fig. 15, we observe that the
localization error increases at most by 0.1 cm and decreases
by 2.5 cm when we ignore wall information. This suggests
that there is really no significant loss or gain by including
wall information into the transition probabilities. As a re-
sult, we can save in some overhead cost in computing the
transition probabilities without risking loss in localization
accuracy.

5.5 Complexity and Feature Trade Offs

We have shown how MML and HMML achieve a lower
localization error than other DFL methods and can do so
in a changing environment and without an empty room or
fingerprint calibration period. Other DFL methods do not
share all of these same properties. The trade off, however,
for using MLL and HMML over other DFL methods is the
greater memory and computational complexity required to
run them. In Table 1, we compare the properties of MLL,
HMML and other DFL methods, their calibration require-
ments, and their memory and computational complexity.

The table shows that DFL systems that require labelled
empty-area calibration or labelled fingerprints like RTI and
LDA are not able to achieve constant localization perfor-
mance over the long term unless they are recalibrated or
retrained. Needing labelled training can be a major incon-
venience, e.g., for a home-bound patient who has limited
mobility. DFL systems, like KRTI, that only locate motion
does not address the need for occupancy estimation for
home automation and in-area monitoring. MLL and HMML
do not have either of these drawbacks.

However, the trade off when using MLL or HMML is
their relatively higher memory and computational complex-
ity. We observe that HMML has an extra P 2 memory factor
which is used to store the transition probabilities and an
extra P 2 term in computational complexity which is needed
to compute the forward algorithm. The greater memory and
computational cost of HMML were used to add a temporal
component to localization. We set out to see if the temporal
properties of HMML would provide greater localization
accuracy than MLL, but we did not observe those gains.
HMML is therefore at a disadvantage when P is increased
when compared to any of the DFL methods we compared.

The alternative to HMML is MLL, which does not in-
clude the extra P 2 memory and P 2 computation like for
HMML. We also saw in the previous sections that MLL often
performed localization just as well as HMML. Since MLL
ignores the temporal component that HMML embraces, it
reduces the computational and memory cost by a nontrivial
amount. One question to be asked though is, why doesn’t
HMML benefit from the addition of transition probabilities?
We note that both MLL and HMML use the likelihood
probabilities in equation (3) which turn out to be values
either very near 0 or very near 1 since L is large for all
of our experiments. Therefore, the transition probabilities

play an insignificant role when inductively computing the
joint probabilities αk. The localization results of MLL and
HMML demonstrate that, at least in the experiments we per-
formed, there is no clear advantage for including temporal
properties into the localization problem by using HMML. In
general, estimating with temporal properties is helpful since
it smooths unlikely jumps in the location estimate. How-
ever, in the experiments we performed, the measurement
dimension was so high that it resulted in likelihoods that
overwhelmed any contribution the transition probabilities
could make in HMML. Had this not been the case, and had
we been able to sample more frequently, HMML may have
been able to reduce the number of big jumps in the location
estimate.

6 CONCLUSION

In this paper, we have presented a new signal strength-
based Bayesian device-free localization system called
model-based localization (MPL) that can localize stationary
people, does not require an empty room calibration period,
and achieves constant localization performance in changing
environments. We developed a new mixture model where
the probability of a person occupying a location is a function
of signal strength measurements from a wireless sensor
network. Our mixture model allowed for uncertainty in
the state of the link as a function of the person’s location.
We developed two realizations of MPL including MLL
and HMML which compute the probabilities of a person’s
location based on the RSS measurements observed. We also
developed a method to continuously recalibrate our model
to a changing environment.

To validate the performance of MLL and HMML, we
performed a series of experiments at three different sites
and compute the localization error of MLL, HMML and
three other DFL methods. We demonstrated that MLL and
HMML outperform the baseline methods in terms of lo-
calization accuracy, that MLL and HMML are capable of
localizing a stationary person when other baseline methods
cannot, and that MLL and HMML achieves constant local-
ization performance even when the environment changes.
For assisted living and home automation applications, MPL
offers an important advantage of constant localization per-
formance and tracking stationary people without significant
costs in computational complexity, memory usage, or con-
venience.
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