
WATCH: A Distributed Clock Time Offset
Estimation Tool for Software-Defined Radio

Platforms
Cassie Jeng

Electrical & Systems Engineering
Washington University in St. Louis
St. Louis, Missouri, United States

jeng.c@wustl.edu

Neal Patwari
McKelvey School of Engineering
Washington University in St. Louis
St. Louis, Missouri, United States

npatwari@wustl.edu

Abstract—The synchronization of clocks used at different
transceivers across space is of critical importance in next-
generation wireless networks. Experimental testbeds must pro-
vide synchronization services so that users can test new efficient
communication and accurate localization technologies; yet recon-
figurability can sometimes introduce unintended asynchronicities.
We introduce WATCH, a tool to monitor the time synchronization
of nodes in a geographically distributed software-defined radio
(SDR) testbed. WATCH estimates clock differences using cross-
correlation between transmitted and received packets and consid-
ers both propagation delay and noise in the channel. We model
pairwise measurements as a linear function of the difference be-
tween the nodes’ local clocks from the network’s global clock, as
well as each node’s additional delay for packet transmission. This
model allows WATCH to simultaneously estimate all of the clock
offsets and transmit delays. We compare using transmissions of
modulated data packets and pseudo-noise (PN) code signals to
experimentally test and verify the performance of WATCH on the
Platform for Open Wireless Data-driven Experimental Research
(POWDER), where it detected a firmware problem that led to a
time synchronization error between SDR nodes on the platform.

Index Terms—time synchronization, wireless networks,
software-defined radio, experimental wireless testbed

I. INTRODUCTION

Clock time synchronization is imperative for mobile and
wireless networks. From improving network efficiency [1] to
reducing channel overhead and computation, time synchro-
nization is necessary for effective and reliable communication
across a distributed wireless network [2]. Deployed time-
division duplex (TDD) cellular protocols such as 5G New
Radio (NR) and Citizens Broadband Radio Service (CBRS)
require < 3µs synchronization [3]. Wireless technologies that
use multiple distributed receivers to increase reliability and
bandwidth rely on phase and time synchronization [4], [5].
Experimental testbeds must provide time synchronization ser-
vices to geographically distributed SDRs, with better accuracy
and precision than current needs, to enable testing of next-
generation efficient wireless protocols.

This material is based upon work supported by the US National Science
Foundation under Grants #1827940 and #2232464; and the PAWR Project
Office.

However, distributed and reconfigurable platforms can have
configuration, network, and device software issues that can
cause synchronization problems. A means to monitor syn-
chronization in the network allows users to verify that no
significant timing errors are currently measured across nodes.

This paper describes experimentation with and development
of WATCH on the Platform for Open Wireless Data-driven
Experimental Research (POWDER), a large city-scale openly
accessible SDR platform. To address the need for accurate
network synchronization in wireless research, POWDER cur-
rently deploys two synchronization systems for its rooftop
nodes and fixed endpoints that can operate in TDD mode
for experimentation in the CBRS band [6]. One of these
systems deploys the White Rabbit protocol which provides
sub-nanosecond time synchronization accuracy across a net-
work via ethernet and the precision time protocol (PTP) [7] to
achieve on the order of 0.3 ns synchronization accuracy [6].
However, even when installed, the White Rabbit synchroniza-
tion system can fail without indicating to platform engineers
that there is anything wrong. The time synchronization of
transceivers additionally requires correct configuration of the
SDR and its compute node, which is a moving target due to
software updates.

The development of WATCH, our distributed clock time
offset estimation tool, uses POWDER and the Shout mea-
surement framework [8] to investigate time synchronization
accuracy in the network. The goal is to estimate clock offsets
in the network by using the transmit (TX) and receive (RX)
data from Shout, hopefully enabling future research with new
time synchronization capabilities on POWDER and other SDR
platforms. This paper details the transmission and reception
of a digitally modulated packet in order to provide intuition
about the time-delayed, attenuating, and noisy radio channel.
The impact of the channel and the packet signal can lead to
errors in the time delay estimate, which we elucidate using the
example of a narrowband digitally modulated packet signal.
This motivates the use of a PN signal for the purpose of time
synchronization.

The delays between packet transmission and reception

should only be due to propagation delays, which on POWDER
are on the order of 1µs. However, in the experiments reported
in this paper, WATCH found larger delays, which we later
diagnosed to be related to a firmware misconfiguration.

A. Desired Functionality

With ideal time synchronization, there should be almost
zero lag beyond propagation delay between the transmitted
and received packet, independent of which nodes are used.
While POWDER deploys the White Rabbit protocol to time-
synchronize its rooftop nodes, the network operators may
sometimes be unaware about conditions which make the
protocol fail. WATCH presents a solution to this challenge by
providing an independent means to identify any asynchronous
nodes by analyzing the offsets/lags in a short over-the-air
experiment’s received packets. The tool’s resulting offset es-
timates show which nodes, if any, are significantly offset
from the rest in the network, allowing researchers to either
compensate or notify operators about the synchronization
failures.

II. METHODS

WATCH was developed by focusing on time-based local-
ization and link timing between a transmitter and receiver,
time synchronization, and error correction. These steps helped
further understand the elapsed time during transmission in
relation to each node’s local time, algebraically express packet
cross-correlation offset, and determine the level of time syn-
chronization among nodes by analyzing collected network
data. Every node in a distributed network of SDR-based nodes
has an inherent transmit delay, as well as a local clock offset
from the network global clock. The combination of these two
unknowns makes it difficult to understand whether a measured
receiver delay is due to one or the other, or both. Rather
than measuring pair-wise delays between each pair of nodes,
WATCH uses a more efficient protocol in which each node,
in turn, transmits once while all other nodes measure the
received signal [9]. WATCH then uses a linear model relating
the measurements to all node clock offsets and transmission
delays simultaneously. This model has more equations than
unknowns if the number of nodes is sufficiently high. Then,
WATCH solves for all node clock offsets and transmission
delays.

A. Experimental Motivation

The linear model for these node transmission delays and
local clock offsets was built using the cross-correlation index
of a received packet with either the preamble of the original
transmitted packet or the entire original packet, a method
inspired by how a receiver detects and synchronizes to dig-
itally modulated packets [11]. Our cross-correlation function
originally used a locally reconstructed preamble to find the
index of the maximum cross-correlation, corresponding to the
received signal’s lag in samples and, therefore, representative
of the clock time offset of that TX-RX node pair. Fig. 1 shows
the results of this function, plotting both where the preamble

Fig. 1. Cross-correlation of received packet with the packet preamble. The top
subplot depicts the received signal with the overlaid preamble at the calculated
lag index. The bottom subplot depicts the resulting cross-correlation between
the received signal and the preamble.

Fig. 2. Enlarged preamble match region showing, in green, the reconstructed
preamble and how it aligns with the received packet.

was found and the resulting cross-correlation signal where
peaks show high cross-correlation between the two signals.
Fig. 2 shows an enlarged version of the green region where
the reconstructed preamble matched a preamble section in the
received packet.

The lags indicate an estimate for how many samples into the
captured receiver samples the transmitted packet is detected. In
an optimally time-synchronized network, all received packets
from the same transmitter should have the same offset, within
1-2 samples, for every repeated transmission.

Our initial results did not show this low variation in es-
timated offset, which we identified as being related to the
autocorrelation structure of the preamble in use. Initially, we
had cross-correlated with the preamble signal, which resulted
in multiple peaks shown in Fig. 1, representing a large range
where the function might find a close match to the preamble
in the received signal. Sometimes the estimated offset from
the peak-finding algorithm would be of a different cross-
correlation peak. We also then tested cross-correlating the raw
received signal with the packet IQ sampled signal, recreated
at the receiver. This worked better than cross-correlating with
just the preamble, but the cross-correlation function still was

Fig. 3. PN Code absolute value of Cross-Correlation by sample showing
peaks with clear maximum values.

wide, with sometimes poor performance in low SNR cases.
These sub-optimal time offset estimation results produced

from running experiments with standard narrowband digitally
modulated packets showed that a specially designed transmit
signal is desired for optimally estimating lags. We designed
new transmit signals containing only a BPSK maximum length
PN code. These codes, also referred to as linear feedback shift
register (LFSR) sequences, are a solution to the dichotomy
of necessary randomness and pattern. A PN code appears
random, yet its entire sequence is known and has good auto-
correlation properties, fulfilling both requirements while also
serving a practical purpose for digital communication systems
[14]. A special characteristic of the PN code is in its sequence
of runs, i.e., sequences of binary 1s and 0s. A run length is the
count of 1s or 0s in that run sequence. In any PN code, the run
length of 1s and 0s only differ by one bit [14]. Therefore, when
a PN code is shifted by some number of bits and added to the
original sequence with a modulo-2 exclusive OR (XOR) gate,
the result is the original PN code shifted by some new number
of bits [14]. An N -state PN code will have 2N − 1 bits in the
generated sequence. Since WATCH uses QPSK demodulation,
two unique 9-state, 511 bit PN codes were used, one for in-
phase and one for quadrature, using a modified version of
a simulated LFSR MATLAB function [15]. Transmitting PN
codes and cross-correlating the received packet with the entire
original PN code further isolated the peak areas and resulted
in well-defined maximum values and clear lag index choices,
as shown in Fig. 3. The time corresponding to the maximum
of the cross-correlation function is referred to δi,j , where i
is the transmitter and j is the receiver. Note that the time is
taken according to the local clock of the receiver node j.

B. Lag time vs. Node Clocks and Timing

This subsection derives the linear model that relates the
measured offsets to the clock offsets and the transmission
delays. We describe the message TX and RX with a prototype
link timing diagram in Fig. 4. Each column refers to a
clock, either the local clock of a node or the global clock.
Time progresses downward in the figure; each horizontal line

Fig. 4. The local clocks at node i and node j have their own offsets from
the global clock ei and ej , respectively, so that at global time 0, it is time ei
at node i and time ej at node j. Node i triggers its transmission routine at
the time it believes to be time 0, which corresponds to time ej − ei on node
j’s clock. There is a delay Ti before node i actually starts transmission out
of its antenna. Adding propagation delay pi,j between nodes i and j, signal
reception actually starts at time ej − ei + Ti + pi,j on node j.

represents the same time at different nodes. We refer to the link
transmitter node as node i and the link receiver node as node
j, and although many nodes receive the signal transmitted by
node i, we show only one receiver for simplicity. Node i and
j’s internal clocks differ from the global clock by ei and ej ,
respectively, as shown in Fig. 4. Each transmitter has a delay
between the time it is asked to transmit (local clock time 0 in
Fig. 4) and when it actually emits the signal from its antenna,
denoted Ti.

Using the timing diagram in Fig. 4, we can write a model
for the measured offset lag time δi,j .

δi,j = ej − ei + Ti + pi,j + η, (1)

where pi,j is the propagation delay on the link (i, j), and η
is noise in the measurement. The propagation delay pi,j is
a deterministic function of the node’s coordinates. Both pi,j
and noise n in the channel are assumed to be negligible in
comparison to δi,j . Even when not negligible, the known pi,j
can be subtracted out; thus in the following, we simplify by
setting η and pi,j to zero.

Ideally, the TX and RX local clocks would be the same,
as well as synchronized with the network global clock. In
the timing diagram in Fig. 4, this would correlate to both
ei = 0 and ej = 0 and would simplify (1) to δ = Ti. Having
δ = 0, meaning ideal time synchronization, would require both
the transmitter and receiver to have no delay from the global
clock, ei = 0 and ej = 0, and for there to be no delay at the
transmitter before sending the packet, Ti = 0.

C. Linear Matrix Equation

The timing diagram was used to create a linear matrix
equation for the relationship between all nodes in the network,
the experimental delays, and the estimated parameter offsets.
The parameter vector θ is a list of all ei and Ti unknowns,
specifically,

θ = [e1, . . . , eN , T1, . . . , TN]T . (2)

∆ is a vector of the measured δ offsets from all M measured
links (in our case, M = 42). Using these elements, our
measurement equation is,

∆ = Aθ, (3)

where A is an M × 2N − 1 measurement model matrix
constructed such that each row represents one of M link
measurements, and N represents the number of nodes in the
network.

The measurement model matrix A holds node interactions,
represented as either 0, 1, or -1. The columns of matrix A
represent the nodes, repeated twice. For example, column 1
and N+1 both correspond to node 1 in the experimental node
list. A is built by row (link), by assigning a 1 to both columns
corresponding to the transmitter, and a -1 to the first column
corresponding to the receiver. The rest of the entries in the
matrix are 0. This process sets up the left half of the matrix,
which is related to the top half of the θ vector, establishing
ei − ej . The right half of the A matrix, relating to the bottom
half of the θ vector, defines the Ti in (1).

Because there is no available reference for the global clock
time, matrix A, defined initially as a M×2N matrix, was rank
deficient. To prevent this, the first column of A was removed
to use the first node as the reference point for the global clock.
Therefore, all results are in relation to the first node and are
assuming the first node to be synchronized with the global
clock. The structure of the resulting M × 2N − 1 matrix is
shown in (4). The elements of the sub-matrices Li, a (N −
1)×(N−1) matrix in the first column, and Ji, a (N−1)×N
matrix in the second column, are defined in (5).

A =


L1 J1
L2 J2
... ...
LN JN

 (4)

[Ji]k,l =

{
1, if l = i
0, o.w.

[Li]k,l =


1, if l = i− 1
−1 if l < i− 1 and k = l + 1
−1 if l > i− 1 and k = l
0, o.w.

(5)

We note that A will be rank deficient if M < 2N − 1. At
most, the number of independent link measurements in an N
node network is N(N −1). This means we would not be able
to estimate θ from (3) when N < 3.

After ensuring that A is not rank deficient, the Moore-
Penrose pseudo-inverse of A, which we denote A†, is used
to solve (3) for the unknown θ estimate vector. The pseudo-
inverse is used since the A matrix is both non-square and
sparse. Equation (6) shows the new, rearranged equation that
allows WATCH to estimate the parameters:

θ̂ = A†∆ (6)

The final θ̂ vector that is found using the pseudo-inverse of
the node interactions matrix and the experimental offset vector
gives the WATCH parameter vector estimate, containing each
node’s local clock offset from the global clock, ei, and the
transmission delay at each node, Ti. Our purpose in this paper
is to estimate each node’s ei value, so we denote the vector
ê = [ê1, . . . , êN]T as the estimates of the ei clock offsets at
each node taken from θ̂.

III. WATCH EXPERIMENTS ON POWDER

Much of the experimentation with WATCH after develop-
ment was done with POWDER, an open experimental city-
scale SDR platform at the University of Utah. The POW-
DER testbed offers, among other resources, eight rooftop
base stations with SDRs, seven fixed-endpoints, white rabbit
synchronization nodes at several nodes, and a framework for
remote accessibility [6].

The development of WATCH builds off POWDER and its
instrumental measurement framework, Shout. Shout is a suite
of Python scripts that iteratively orchestrates simultaneous
transmission and reception across a collection of nodes to
collect wireless measurements and their associated link budget
estimates [10]. This process can be conducted in any frequency
band, with any transmitted signal, and any number or type of
nodes, all customized by the user while designing the experi-
ment parameters. For example, in our experiment with seven
rooftop nodes, each node broadcasts the same packet to all of
the other six nodes in the experimental network, sweeping the
reserved frequency range in designated increments and using
a fixed time and power. To gather “power-over-noise” data for
each channel, Shout collects measurements with and without
the active transmitter, first measuring just the channel noise
and then measuring the received signal [10].

While developing WATCH, we focus on the POWDER
rooftop x310 radio base stations and their associated d740
compute nodes. We use the seven available rooftop radios:
Behavioral (BES), Browning, Friendship Manor (FM), Hos-
pital, Honors, Medical Tower (SMT), and USTAR. Specific
aspects of a default Shout experiment, such as the pre-loaded
JSON parameters file and the meascli.py Shout script,
were adjusted to specify the frequency range to 3450-3460
Hz, 250 kHz sampling rate, node names, and PN code packet
to transmit as listed in Appendix B of [12]. Additionally, the
script was modified to enable external clock using the White
Rabbit (WR) time synchronization systems, an Ethernet-based
innovation for sub-nanosecond synchronization in large dis-
tributed systems [16]. However, there are still synchronization
performance challenges in platforms like POWDER because
nodes reside in a realistic environment where they are sus-
ceptible to aspects like temperature fluctuations [16], and net-
work, hardware, and software misconfigurations. For WATCH,
packets were transmitted four times per each transmitter and
receiver pair via Shout, and in the lag A matrix, M = 42 and
N = 7 for all experiments. All lag data was collected using
the same process, as outlined in the README.md document
of the WATCH Repository [13].

The results, an estimation vector θ̂, were formulated into
the linear matrix equation and node interaction matrix A to
produce experimental offset calculations. Knowing the offset
of each node’s local clock from the local reference node can
inform the researcher whether the nodes in their experiment
are time-synchronized or not, and therefore, whether some
additional adjustment is needed.

IV. RESULTS

We observed two significant network behaviors from the
various WATCH experiments run via Shout. First, software
misconfigurations in the network SDRs or in Shout itself can
cause the nodes to operate via only their internal clocks and
thus behave asynchronously. When this occurred, the results
from WATCH showed distinct groups of nodes with similar
time synchronizations within each. An example experiment
where this was detected resulted in FM, Hospital, Honors, and
USTAR having similar lags to each other, while Browning,
SMT, and BES had similar lags to one another but different
than the first group. Enabling White Rabbit on all the nodes
allowed all the TX-RX pairs to result in lags within the
expected 1-2 sample offset from one another.

FM was the only node that, despite having WR enabled,
remained differing from the other nodes by a 930 sample
additional lag. A 930 sample offset in the network corresponds
to a 3.72 ms difference at the nodes (corresponding to a
path length of 1100 km!) which cannot be attributed to
the propagation delay between nodes, and therefore must be
related to the time synchronization in the network. Equation
7 uses the 930 sample difference and the 250 kHz sampling
rate to calculate the time offset in milliseconds.(

930

1

)(
1 s

250000

)(
1000 ms

1s

)
= 3.72 ms (7)

We found that this was due to a firmware misconfiguration
on the FM rooftop node that caused it to sample PPS at the
clock rising edges instead of the falling edges that are tracked
running the stock firmware on the other POWDER nodes.
WATCH detected this misconfiguration by producing network
time synchronization results showing only one node signifi-
cantly offset from the expected propagation delay and channel
noise lags, informing the POWDER network operations team
of the differing firmware on FM.

Fig. 5 shows the output from a WATCH experiment running
WR and detecting the firmware misconfiguration in FM. All
other nodes are offset less than 1 sample from each other,
referring to the ei values, and FM is offset from the rest by
approximately 930 samples. Since we do not know the global
clock time, all resulting ei values are in relation to a chosen
reference node, BES, while still showing how synchronized
the network is among nodes. Negative values in the figure
refer to clocks that are running earlier than BES.

The WATCH results, node ei values, can be used by
researchers to accommodate or correct for imperfections in
the network’s time synchronization, as well as inform network
operators that there might be time synchronization failures.

Fig. 5. Lag results, in number of samples, from WATCH experiment with
WR enabled on all nodes.

Fig. 6. Plot of direct error, |∆− ∆̂|. The x-axis shows the links, numbered
to 42 and the y-axis shows the error in number of samples with a 250 kHz
sampling rate.

A. Error Analysis

For all WATCH experiments, error was defined as the
difference between the offsets from the measured lag data,
∆, and an estimated delta vector, ∆̂, found using (8), (3), and
the estimated θ̂.

∆̂ = Aθ̂ (8)

In-depth error analysis was performed on all experiments
and included in WATCH to inform on the precision and
reliability of WATCH for each data set as environmental
fluctuations may lead to inconsistencies between repetitions.
We analyze direct error comparison, ∥∆−Aθ̂∥, and root mean
squared error (RMSE) to compare repetitions and estimation
results.

Ideally, ∥∆ − Aθ̂∥ should be random with no obvious
pattern or major peaks. Fig. 6 shows an example resulting error
plot with a RMSE of 0.4447 samples or 1.779µs. Observing
these plots for each experiment, WATCH can distinguish
between data from time-synchronized nodes and data from
asynchronous nodes based on their y-axis errors.

The RMSE, in number of samples, is a single number over
all samples for each repetition, that shows, on average, how
many samples differ between the measured lags, ∆, and the
estimations, ∆̂. If the resulting RMSE for any or all of the
repetitions in an experiment is larger than approximately 1.0,
this informs the researcher that error is high and there might
be an issue causing results to differ from the model.

V. RELATED WORK

WATCH contributes to research on time synchronization,
experimental testbeds, and debugging of time synchroniza-
tion challenges. Time synchronization issues in systems can
be caused by many different problems, including degrading
nodes, clock drift, and uncertainties in message delays [17].
Current corrections and techniques are implemented through
either local device synchronization or network clock synchro-
nization, both similarly and differently from WATCH.

Local device synchronization reuses parts of the existing
network for time synchronization purposes and does not rely
on a predetermined global clock [17]. In Time-Stamp Synchro-
nization (TSS), a method where all nodes run asynchronously
with timestamps that are only valid at their node, time gets
transferred to other nodes by sending the timestamp as a
part of a transmitted message [17]. Contrarily, network clock
synchronization requires consistency between a global clock
and all nodes [17], such as in the wireless SDR method that
uses Universal Software Radio Perpiheral (USRP) generated
reference PPS pulses to transmit and synchronize with sur-
rounding USRP SDRs [18]. In this method, each RX node
checks the rising edge and maximum amplitude of the received
PPS to find the exact timing of the reference USRP [18].

WATCH provides a way for Shout to perform local device
synchronization by measuring the offsets between nodes in
the network without knowledge of global time. Time syn-
chronization can be monitored by WATCH through itera-
tive transmissions and receptions across all devices, as well
as offset analysis upon packet reception. While introducing
hardware and network clock synchronization can bring new
challenges, such as a question of readily available resources, it
can also simplify the required software for running the system
[19]. It is, therefore, helpful to observe the advantages and
disadvantages inherent to network clock synchronization, as
well as to understand the workings of WATCH.

VI. CONCLUSION

We developed WATCH as an operational GitHub repository
that uses our node interaction matrix A to model the measured
time offsets observed on links across a distributed network as
a function of the clock offsets and TX/RX delays. WATCH
provides researchers with suggestions about the accuracy of
the external clock time synchronization among their nodes,
allowing readjustments to prevent time degradations from neg-
atively effecting their results. WATCH was evaluated through
experiments on POWDER, transmitting PN code packets, and
analyzing error between measured offsets and estimations, but
it was also designed to be applicable to other SDR platforms.
Future steps include modifying WATCH to allow adjustments
to values such as the number of transmission iterations and the
number of nodes, therefore accommodating other platforms, as
well as automating the code to consistently monitor networks.

ACKNOWLEDGMENT

The authors would like to thank Jie Wang, Aarti Singh,
and Meles Gebreyesus Weldegebriel for introducing the useful

tools in POWDER; Dr. Jim Feher and Francesca Allhoff at
Washington University, and the members of the Flux Research
Group at the University of Utah.

REFERENCES

[1] E. Hamed, H. Rahul, and B. Partov. “Chorus: Truly Distributed
Distributed-MIMO.” In ACM SIGCOMM 2018 Conference, Budapest,
Hungary, Aug. 2018.

[2] A. Luong, P. Hillyard, A. S. Abrar, C. Che, A. Rowe, T. Schmid,
and N. Patwari. “A stitch in time and frequency synchronization saves
bandwidth.” 17th ACM/IEEE Intl. Conf. on Information Processing in
Sensor Networks (IPSN), Apr. 2018.

[3] ETSI. “5G NR: Requirements for support of radio resource management
(3GPP TS 38.133 version 16.4.0 Release 16).” ETSI Standards Technical
Specification, Aug. 2020.

[4] B. Li, X. Zhu, Y. Jiang, H. Zeng, and Y. Wang. “Cooperative time
synchronization and parameter estimation via broadcasting for cell-
free massive MIMO networks.” IEEE Wireless Communications and
Networking Conference (WCNC), 2022.

[5] L. Baldesi, F. Restuccia and T. Melodia, “ChARM: NextG spectrum
sharing through data-driven real-time O-RAN dynamic control.” IEEE
Conference on Computer Communications, London, United Kingdom,
2022, pp. 240-249, doi: 10.1109/INFOCOM48880.2022.9796985.

[6] J. Breen, A. Buffmire, J. Duerig, K. Dutt, A. Ghosh, M. Hibler, D.
Johnson, S. K. Kasera, E. Lewis, D. Maas, C. Martin, A. Orange, N.
Patwari, D. Reading, R. Ricci, D. Schurig, L. Stoller, A. Todd, K.
V. der Merwe, N. Viswanathan, K. Webb, and G. Wong. “POWDER:
Platform for open wireless data-driven experimental research.” Computer
Networks, 197, Oct. 2021.

[7] M. Lipiński, T. W lostowski, J. Serrano, and P. Alvarez. “White rabbit:
A PTP application for robust sub-nanosecond synchronization.” In 2011
IEEE International Symposium on Precision Clock Synchronization for
Measurement, Control and Communication, pp. 25–30, 2011.

[8] F. Mitchell, A. Baset, and K. Webb. “Shout Measurement Framework.”
Flux Gitlab, Source Code, Version 3, December 2021. Online: https:
//gitlab.flux.utah.edu/frost/proj-radio-meas.

[9] A. Solomon Abrar, A. Luong, G. Spencer, N. Genstein, N. Patwari,
and M. Minor. “Collision prediction from UWB range measurements.”
arXiv:2010.04313 [eess.SP], 9 Oct. 2020.

[10] K. Webb, S. K. Kasera, N. Patwari, and J. Van der Merwe. “WiMatch:
Wireless resource matchmaking.” IEEE INFOCOM Workshop: Com-
puter and Networking Experimental Research using Testbeds (CNERT
2021), May 2021.

[11] C. Jeng, N. Patwari, A. Singh, J. Wang, and M. G. Weldegebriel. “Over-
the-air Narrowband QPSK Modulation and Demodulation.” Source
Code, Version 0.1, January 2023. Online: https://github.com/npatwari/
tx rx processing.

[12] Cassie Jeng. “WATCH: A distributed clock time offset estimation tool
on the platform for open wireless data-driven experimental research.”
2023. Washington University in St. Louis, Masters Thesis.

[13] C. Jeng. “Offset estimation.” Source Code, Version 0.1, May 2023.
Online: https://github.com/cjeng8771/offset estimation.

[14] R. N. Mutagi. Pseudo noise sequences for engineers. Electronics &
Communication Engineering Journal, 8(2), April 1996.

[15] N. Patwari. ECE 5325/6325: Wireless communication systems lecture
notes, January 2017. Department of Electrical and Computer Engineer-
ing, University of Utah.

[16] J. Serrano, M. Cattin, E. Gousiou, E. van der Bij, T. W Lostowski, G.
Daniluk, and M. Lipiński. “The White Rabbit Project.” Proceedings of
IBIC2013, Oxford, UK, Sep. 2013.

[17] K. Römer, P. C. C. Blum, and L. Meier. “Time synchronization and cal-
ibration in wireless sensor networks.” In Handbook of Sensor Networks,
2005.

[18] W. J. Yoo, K. H. Choi, J. Lim, L. W. Kim, H. K. Lee, and H. So.
“An experiment study for time synchronization utilizing USRP and
GNURadio.” In GNU Radio Conference 2017, September 2017.

[19] M. Buevich, N. Rajagopal, and A. Rowe. “Hardware assisted clock
synchronization for real-time sensor networks.” In 2013 IEEE 34th Real-
Time Systems Symposium, 2013.

