
On-Off Noise Power Communication
Philip Lundrigan
lundrigan@byu.edu

Brigham Young University
Provo, Utah

Neal Patwari
npatwari@wustl.edu

Washington University in St. Louis
St. Louis, Missouri

Sneha K. Kasera
kasera@cs.utah.edu
University of Utah
Salt Lake City, Utah

ABSTRACT
We design and build a protocol called on-off noise power
communication (ONPC), whichmodifies the software in com-
modity packet radios to allow communication, independent
of their standard protocol, at a very slow rate at long range.
To achieve this long range, we use the transmitter as an RF
power source that can be on or off if it does or does not
send a packet, respectively, and a receiver that repeatedly
measures the noise and interference power level. We use
spread spectrum techniques on top of the basic on/off mech-
anism to overcome the interference caused by other devices’
channel access to provide long ranges at a much lower data
rate. We implement the protocol on top of commodity WiFi
hardware. We discuss our design and how we overcome key
challenges such as non-stationary interference, carrier sens-
ing and hardware timing delays. We test ONPC in several
situations to show that it achieves significantly longer range
than standard WiFi.

CCS CONCEPTS
• Networks → Cross-layer protocols; Network range;
Network protocol design; Home networks; Cyber-physical net-
works; Wireless local area networks.

KEYWORDS
Internet of Things; long-range communication; WiFi; wire-
less communication

ACM Reference Format:
Philip Lundrigan, Neal Patwari, and Sneha K. Kasera. 2019. On-
Off Noise Power Communication. In The 25th Annual International
Conference on Mobile Computing and Networking (MobiCom ’19),

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
MobiCom ’19, October 21–25, 2019, Los Cabos, Mexico
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6169-9/19/10. . . $15.00
https://doi.org/10.1145/3300061.3345436

October 21–25, 2019, Los Cabos, Mexico. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3300061.3345436

1 INTRODUCTION
When WiFi devices are deployed in difficult-to-access loca-
tions over long periods of time, as is done in a variety of
Internet-of-things applications, network and system man-
agement faces fundamental observability challenges. WiFi
provides high data rates when the signal-to-noise ratio (SNR)
is high; however, when the SNR falls below the threshold
for the lowest data rate, the device achieves no data rate and
the device disconnects from the network. A remote system
manager cannot determine whether the device has a power
outage or SNR too low. This paper explores a physical layer
mechanism to provide “slow data” from a WiFi device to en-
able a system to know, for example, if the device is powered
on, even when the device is unable to communicate using
any 802.11 standard protocol. In this paper, we ask the fol-
lowing question: can we extend the range of communication
of a WiFi device so that it can notify a receiver that it is still
functioning, even though it cannot communicate over WiFi?
Our research is motivated by our past experiences man-

aging many deployments of WiFi sensors in homes of hu-
man subject research study participants. These homes are
“difficult-to-access”: getting physical access to a sensor can
take a deployment manager days or weeks to schedule a
time that the study participant is available, and some study
participants may feel inconvenienced enough to drop out of
the study as a result. In one deployment, we placed a WiFi
sensor in the bedroom, as required for the study. Although
far from the home access point (AP), the sensor connected
reliably at deployment time. Over the next weeks, the link oc-
casionally had a low packet reception rate, but could reliably
transfer the low rate sensor data as required. At one point,
the sensor stopped reporting, and no data was received for
more than 12 hours. We had no way of knowing if the sensor
had lost power or if the WiFi link was disconnected. If the
sensor has lost power, the sensor is not collecting data, which
has negative consequences for the human subject study. If
instead the WiFi link is disconnected, it is less problematic
because the sensor is collecting data that the researchers will
eventually be able to access after the sensor reconnects. As
the manager could not tell which was the case, she managed
the risk of data loss with the cost of inconveniencing the

https://doi.org/10.1145/3300061.3345436
https://doi.org/10.1145/3300061.3345436

participant and contacted the participant to ask if the sensor
was powered on. The participant moved a basket of laundry
to check on the sensor, and the sensor immediately recon-
nected. Together they determined that the outage started
at the same time the study participant placed the basket of
laundry next to the sensor. Our key lesson: WiFi links that
are reliable at the time of deployment may fail on any given
day due to normal daily activities.

Wireless technologies exist that provide longer range than
WiFi, such as cellular, LoRa [26], and 802.11ah [4]; however,
these technologies have substantial drawbacks. Cost and
power utilization are much higher with cellular compared
to WiFi. Additionally, cell networks can suffer from dead
spots inside of buildings. LoRa and 802.11ah promise longer
ranges but require different radios to work. A wireless device
would need to be outfitted with these radios, and the home or
building would need a base station for that wireless technol-
ogy, which would be costly or difficult to implement. On the
other hand, WiFi is widely deployed in homes and buildings
and is well studied and understood. It is also inexpensive
to integrate into devices; a WiFi transceiver and microcon-
troller module can be purchased for less than US $3 [29].
Sensors using WiFi can be a cost-reducing measure because
they are piggybacking on a widely deployed technology,
which is a big incentive for budget constrained studies. To be
able to continue to use WiFi hardware, but get longer range,
would be a considerable advantage compared to alternative
approaches.

Even with the cost reducing and widely deployed benefits
of WiFi, a key challenge of dealing with WiFi devices is that
WiFi is limited by the lowest data rate the access point (AP)
supports. This means that if the SNR of a WiFi client is low
enough such that theAP can not demodulate transmissions at
the lowest data rate, theWiFi client will become unassociated
from the network. The AP and device will no longer be able
to communicate with each other until the SNR is higher and
the WiFi client has gone through the association procedure
again.
In developing a solution to this problem, we have the

following design goals:

(1) A solution should have a longer range than standard
WiFi. This will solve the observability problem of de-
ployed WiFi devices by allowing a device to send some
data even if it is slightly outside the range of WiFi.

(2) A solution should use the same radio that WiFi uses.
This allows us to keep the benefits of WiFi (cheap,
widely deployed, etc.).

(3) A solution should not change the hardware or WiFi
firmware of the WiFi devices. This especially bene-
fits already deployed devices that could be enhanced
from such a solution with only a software update. This

also makes such a system more realistically deployable
in a real IoT environment because off-the-shelf WiFi
components can be used.

(4) A solution should be 802.11 MAC compliant. This en-
sures that devices do not disrupt the normal function
of a wireless network when deployed.

To meet these goals and thus provide a solution that sup-
ports longer ranges than standard WiFi, we build a novel
protocol called on-off noise power communication (ONPC).
ONPC is a physical layer protocol that allows a WiFi device
to send data to a receiver, even when the device is unable
to communicate using any 802.11 standard protocol. It is
implemented purely in software and requires no changes to
hardware. ONPC creates independent channels of communi-
cation at a much lower data rate by transmittingWiFi frames
on and off in a pseudo-random pattern. Although the receiver
is too distant to receive the data in these frames, it measures
the impact of these transmitted frames on the noise floor,
repeatedly, searching for the pseudo-random pattern. This
allows one device to transmit data to another beyond the
range of WiFi while using standard WiFi radios. For medium
access control (MAC), we use orthogonal coding to allow
multiple ONPC transmitters to transmit at the same time. Fi-
nally, we create Stayin’ Alive, an application that uses ONPC
to build a complete system that allows a manager to know if
a WiFi device is still connected to a power source, or “alive”,
even if it is disconnected fromWiFi, solving the observability
challenge facing IoT deployments. ONPC is not designed to
replace long range protocols, like LoRa, but to supplement
WiFi. We recognize that there are specific scenarios where
a protocol like LoRa would be a better fit. This work looks
to enhance WiFi sensor deployments by creating ONPC and
Stayin’ Alive.
Building a system that meets our goals is challenging.

First, most transceivers provide precise control of when the
transmitter sends each symbol and receives each sample. Off-
the-shelf WiFi devices do not provide this low-level control.
Instead, frames are transmitted and the receiver measures
noise floor samples at unknown times and with random
delays. Some of this randomness is due to carrier sensing
multiple access (CSMA), which is required to make ONPC
802.11 MAC compliant.
A second major challenge is that the noise power mea-

surements we propose for the receiver are heavily impacted
by other WiFi traffic. As we target transmitters that are fur-
ther than the standard WiFi range, the effect of an ONPC
transmitter on the noise floor at the receiver is very small
in comparison to this interfering WiFi traffic. Our use of a
pseudo-random code is designed to add coding gain to en-
able successful demodulation of the ONPC data. However,

interfering WiFi traffic is particularly non-stationary, as in-
dividual devices’ frames tend to be bursty and short-term.
Thus the mean and standard deviation of the noise floor is
temporarily and dramatically affected by other WiFi traffic.

We make several contributions in this paper:
(1) We introduce ONPC, the first protocol that runs on

top of WiFi that extends the range of a WiFi device
beyond the range of standard WiFi.

(2) We design an application, Stayin’ Alive, which uses
ONPC to help managers of WiFi device deployments
know if a device is still functioning, even if it cannot
communicate over WiFi.

(3) We implement ONPC and Stayin’ Alive using off-the-
shelf WiFi hardware and deploy it in various locations,
including a home.

(4) We evaluate different aspects of ONPC and show that
ONPC works beyond the range of WiFi. We also show
that ONPC’s MAC works with multiple ONPC trans-
mitters.

The code for ONPC and Stayin’ Alive are available on
GitHub [19][20].

2 ONPC DESIGN
The general intuition for ONPC is as follows. If the SNR of
a WiFi device drops below a certain threshold for the low-
est data rate the access point supports, the device becomes
disconnected, or unassociated, from the network. Though
the transmission from the device cannot be decoded at the
access point, due to low SNR, it will still have a small impact
on the environment, namely raising the noise floor while it
is transmitting. If the access point continuously monitors
the noise power, it can observe those changes. The device
can transmit WiFi frames in a certain pattern such that the
access point can see changes in the noise floor and know
that that specific device is causing the changes. Using this
approach, an unconnected device can communicate beyond
the range of WiFi.
With ONPC, we are trading a lower data rate for longer

range communication compared to standard WiFi. Since we
are using WiFi frames as a way to change the noise floor, our
data rate will be much lower than standard WiFi, but with
the advantage that it can be decoded from longer ranges.

2.1 Overview
ONPC consists of four components, as shown in Figure 1:
WiFi devices, ONPC transmitters, an access point (AP), and
an ONPC receiver. TheWiFi device functions normally when
within range of WiFi, transmitting or receiving data using
WiFi. This device could be an IoT sensor or any other type
of WiFi connected device. The ONPC transmitter is soft-
ware running on the WiFi device. When the WiFi device

ONPC
Receiver

EthernetWiFi
Access
Point

WiFi Device
ONPC

TX

WiFi Device
ONPC

TX

WiFi Device
ONPC

TX

Figure 1: High-level overview of the components in-
volved in ONPC. A WiFi device runs the ONPC trans-
mitter when it is not connected to WiFi. The ONPC
receiver uses the access point to collect noisemeasure-
ments to detect the presence of an ONPC transmitter.

disconnects from WiFi, an application, such as Stayin’ Alive,
starts the ONPC transmitter which sends frames in a pseudo-
random pattern. The access point is used to collect noise
measurements. The ONPC receiver requests noise measure-
ments from the AP, processes the data, and detects the ONPC
transmissions of the unconnected WiFi devices running the
ONPC transmitter. This allows the receiver to receive data
from the transmitter.
As stated previously, one of our goals with ONPC is not

to modify any hardware or the WiFi firmware. Since we are
choosing not to modify the AP, we need the ONPC receiver
to process noise samples from the AP to decode the ONPC
transmitter’s data. One could imagine that this processing
could be built into an AP’s software in the future.

Next, we outline the design of the individual components
of ONPC.

2.2 Transmitter
ONPC uses a similar approach to direct-sequence spread
spectrum (DSSS). When the transmitter wants to transmit
data to an ONPC receiver, the process goes as follows (see
Figure 2). The transmitter uses a predefined pseudo-random
symbol of ones and negative ones, which are called chips.
To generate the symbol, we use a maximum length sequence
because of its autocorrelation and cross-correlation proper-
ties [14]. This symbol is also known by the ONPC receiver.
The length of the symbol plays an important role in identi-
fying the symbol in the noise. The longer the symbol, the
more likely the receiver will be able to detect the transmitter,
however, a longer symbol takes longer to transmit. Unlike
traditional DSSS systems where the carrier wave is multi-
plied by a one or negative one, our system is only able to
transmit a WiFi frame (on) or not transmit a WiFi frame (off).

1100
Ⓧ

 1 -1 -1 1

Convert to beacons

WiFi TX

Be
ac

on

Be
ac

on

Be
ac

on

Be
ac

on

Be
ac

on

Be
ac

on

Be
ac

on

Be
ac

onSymbol

Data

Figure 2: ONPC Transmitter. A symbol is converted into 802.11 beacon frames and then sent wirelessly.

As a result, all ones are transmissions and all negative ones
are no transmissions.
For the transmission of the “on” chip, a beacon frame is

used because it is a valid 802.11 frame that can be broad-
cast. The use of a standard WiFi frame ensures that ONPC
transmitters do not negatively impact other WiFi devices.
The Stayin’ Alive application on the transmitter works in
the following way: when it detects that the WiFi device is no
longer connected to the network, the ONPC protocol begins.
The transmitter repeatedly transmits its symbol for a certain
amount of time. After transmitting, it pauses and tries to
reconnect to any known networks. This process is repeated
until the device eventually connects to a network.
ONPC transmitters are unable to sense the channel for

other ONPC transmissions before transmitting because the
application layer, where the ONPC transmitter is imple-
mented, does not have direct access to the WiFi hardware.
This means that multiple ONPC transmissions could poten-
tially overlap with each other. To allow multiple ONPC trans-
mitters to work at the same time, we use orthogonal symbols,
similar to code-division multiple access (CDMA). This en-
sures that only the symbol that the receiver is looking for is
detected. Since ONPC’s range is longer than standard WiFi,
it has more potential for hidden terminal issues. However,
since each ONPC transmitter is assigned a unique symbol
that is orthogonal to other ONPC transmitters, this allows for
multiple ONPC transmitters to transmit at once. We evaluate
the use of multiple transmitters in Section 5.5.
One of our design goals is to only use off-the-shelf com-

ponents for our transmitter and receiver and not modify the
WiFi firmware. The challenge with doing this is being able
to send frames out in accurate intervals. Timing is key for
ONPC to work because the receiver is looking for a certain
symbol in the noise measurements. If the timing is off, then
the symbols will not match. ONPC is built on the idea that
symbols can be sent predictably. If the timing is not accurate,
ONPC will not work. Three things could potentially affect
the timing of the ONPC transmitter: hardware timing, car-
rier sensing, and clock skew. We describe these challenges

0 250 500 750 1000 1250 1500 1750 2000

Transmission Delay (µs)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

D
at

a

ESP8266

Raspberry Pi

Figure 3: The delay between when a transmission was
expected to occur compared to when it actually oc-
curred, with two hardware types: Raspberry Pi and
ESP8266

and how we overcame them in the sections below. We also
discuss the impact an ONPC transmitter might have on the
wireless network.

2.2.1 Hardware Timing. The first challenge in designing
the transmitter is sending out WiFi frames in a timely and
consistent manner. Since the ONPC software is running in
the application layer and has no direct access to the WiFi
drivers, there is a potential for the system call that transmits
the frame to become interrupted or delayed by other sys-
tem calls. These interruptions cause a delay between when
ONPC asks the hardware to transmit a frame and when the
hardware actually transmits the frame. To understand the
timing characteristics, we build our design on two platforms,
a Raspberry Pi [24] and ESP8266 [29]. To transmit 802.11
frames on the Raspberry Pi, we use packet injection while
in monitor mode [1]. The SDK for the ESP8266 provides a
call for injecting 802.11 frames into the network [11].
We run an experiment to understand and quantify the

timing characteristics of these devices. We set the Raspberry
Pi and ESP8266 to transmit a 50 byte 802.11 beacon frame
and then pause for 1000 µs. We connect these devices to a
spectrum analyzer by RF cable. Figure 3 shows a CDF of the
transmission accuracy of each device. The y-axis shows the

Symbol
Transmitting With Carrier

Sensing

Scenario 1

Scenario 2

Scenario 3

Delay

Missed

Padding

Figure 4: Different scenarios showing how carrier
sensing can change the transmitted symbol. By reduc-
ing the transmission time relative to the chip time, car-
rier sensing does have asmuch of an effect on the sym-
bol.

delay between when the device transmitted a frame com-
pared to when it was expected to transmit. Ideally, the delay
would be zero, meaning a frame is transmitted exactly when
expected. The ESP8266 provides much better timing charac-
teristics compared to the Raspberry Pi. With the ESP8266,
90% of its delays are less than 250 µs. The results show that
the Raspberry Pi does not provide as much timing accuracy
as the ESP8266. This confirms our intuition, given that the
Raspberry Pi is running Linux, which is not a real-time OS,
and the ESP8266 is an embedded system so interrupts and
delays are kept to a minimum. As a result of this experiment,
we implement ONPC on the ESP8266. More details of this
implementation are given in Section 4.

2.2.2 Carrier Sensing. Carrier-sense multiple access (CSMA)
is a feature of the 802.11 MAC which tries to minimize col-
lisions between transmitting devices by waiting a random
amount of time after the channel is clear. As a result of car-
rier sensing, when a frame is “transmitted” in the application
layer, it might not actually be transmitted by the network
adapter until sometime later.

Carrier sensing is an important aspect of the 802.11 MAC
which helps to prevent collisions, but it is a problem for the
timing constraints of ONPC, which requires the symbol pat-
tern is followed. With ONPC, if a transmission is delayed
because of carrier sensing, the symbol could be changed
enough to be no longer detected by the receiver. Also, with
how the ESP8266 SDK implements the frame injection call,
if a transmission is currently pending or the device is trans-
mitting and another frame is injected, the system call will
fail. From the SDK, there is no way to know if a transmission
is currently going on. This can lead to missed transmissions.
Figure 4 shows two examples of cases where carrier sensing
would change the symbol. In scenario one, the symbol 1 -1
1 gets transmitted like -1 1 1 because the first transmission

0 250 500 750 1000 1250 1500 1750 2000

Transmission Delay (µs)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

n
of

D
at

a

ESP8266

Shielded ESP8266

Figure 5: The CDF of the delays between when a trans-
mission was expected to occur compared to when it
actually occurred. There are two configurations, an
ESP8266 and an ESP8266 that has been shielded in a
metal box.

gets delayed by carrier sensing. In the second scenario, the
symbol 1 1 -1 gets transmitted like 1 -1 -1 because the
second transmission fails because the first transmission is
still occurring.

We run an experiment to understand the effect of carrier
sensing. We connect the ESP8266 to a spectrum analyzer via
RF cable, transmitting a 50 byte 802.11 beacon frame and
then pausing for 2000 µs, repeated. Though the transmitter
is wired to the spectrum analyzer, the transmitter is still
sensing transmissions from other devices, leading it to delay
its transmissions because of carrier sensing. Next, we try
to shield the ESP8266 from all transmissions by putting the
ESP8266 in a metal box while still connected to the spectrum
analyzer. By putting the ESP8266 in a metal box, we cut
down on transmissions the device might be sensing. Figure 5
shows the results for the two device configurations. All of
the shielded ESP8266’s offsets are below 250 µs, whereas 10%
of the unshielded ESP8266’s offsets are greater than 250 µs.
These higher offsets are caused by carrier sensing.

One option to deal with carrier sensing would be to dis-
able it. This would allow the ONPC transmitter to transmit
frames without first checking to see if another device is trans-
mitting, reducing the offset time and making transmissions
predictable. However, our transmitter would become harmful
to the network, potentially interfering with other transmit-
ters. Also, this goes against our goal of not modifying WiFi
drivers.

To account for carrier sensing, we add padding to the chip
time. Rather than making the transmission time the same as
the chip time, we add extra time to the chip period so that
if the transmission gets delayed, it will still be within the
chip time window. This allows us to handle a certain amount
of carrier sensing delay and still keep the symbol the same.
This is shown in Figure 4, scenario 3. The amount of padding
added to our system is described in Section 5.1.1.

2.2.3 Clock Skew. The third challenge regarding timing is
clock skew. Since the transmitter and receiver are using
different clocks and there is no synchronization between
them, clock skew could lead to problems. As the two clocks
drift apart, the received symbol would no longer match the
transmitted symbol.

To understand the problem of clock skew, we run the same
experiment from the previous section, using the shielded
ESP8266 to minimize the effect of carrier sensing. We mea-
sure the clock skew to be 30.9 µs skew per second. Given the
time it takes to transmit our symbol, 13.73 seconds (details
are given in Section 4.2), this amount of clock skew will not
have a large impact on our system. Since we are already
adding padding to the chip time to help deal with carrier
sensing, this will also help with clock skew.

2.2.4 Network Impact. By ensuring we are using standard
WiFi hardware, without any modifications, an ONPC trans-
mitter will have no additional negative effect on a WiFi net-
work compared to an ordinary WiFi transmitter. The ONPC
transmitter uses carrier sensing so it will generally not in-
terfere with other transmitters. Other devices on the same
channel as the ONPC transmitter will have to share the chan-
nel which could potentially cause a slowdown. We study the
effect of ONPC on WiFi traffic in Section 5.6.

2.3 Access Point
The challenge with the access point is getting timely noise
value measurements. To achieve this, we use DD-WRT [10]
running on our router. DD-WRT is an alternative firmware
for wireless routers. It provides additional tools compared
to stock firmware for access points, such as command-line
tools to monitor the network and an SSH server. One of our
design goals is not to modify the firmware or drivers of the
WiFi hardware, and we feel that installing DD-WRT does not
violate this goal. We are using a standard DD-WRT firmware
with no modifications necessary to make ONPC work. Using
DD-WRT gives us access to command line tools that can be
run over ssh.

DD-WRT provides a proprietary tool called wl which pro-
vides commands for managing and monitoring the wireless
interface of the access point. One of the commands provides
noise measurements. From what we can gather from the
documentation, it takes a certain number of samples from
the antennas and returns three numbers, the received signal
strength for each antenna. The time it takes to complete the
system call can range from 5.0 ms to 6.5 ms, depending on
the load (amount of wireless transmissions currently active)
of the access point. We assume that the difference between
the time it takes to collect the samples and the time it takes
for the system call is due to system call overheads. This
means that there is a certain amount of time when we do

not receive samples. To deal with this, we increase the size
of the 802.11 beacon frame the transmitter is transmitting
to the maximum frame size the ESP8266 SDK can inject into
the network, 1400 bytes. Measuring this transmission on a
spectrum analyzer, it takes 11.42 ms to transmit. We set our
chip time to 13.73 ms (see Section 5.1.1 for details), slightly
larger than the transmit time, to account for the random
carrier sensing delay. This ensures that we will not miss a
chip transmission between system calls.

2.4 ONPC Receiver
The ONPC receiver pulls measurements from the access
point and processes the measurements in the following man-
ner, as shown in Figure 6. The receiver first runs the noise
measurements through a limiting function, which is de-
scribed in more detail in the section below. Next, it corre-
lates the limited measurements with the known symbol of
the disconnected device. If the correlation crosses a certain
threshold, τ , the receiver starts to interpret the values as bits,
a positive value as a one and a negative value as a zero. τ is
the number of standard deviations away from the mean a
correlation must be to be considered a bit.

ONPC supports multiple transmitters because each trans-
mitter has its own pseudorandom symbol. The pseudoran-
dom symbol looks like noise if you are not looking for that
particular symbol.
One challenge we encountered when designing the re-

ceiver is decoding an ONPC transmission when non-ONPC
WiFi devices transmit nearby the access point. ONPC is de-
signed to extend the range of communication, and as a result,
the protocol looks for slight variations in the noise mea-
surements. When a transmitter close to the access point
transmits, the received power at the access point jumps up,
causing large variations in correlation relative to when the
non-ONPC WiFi device is not transmitting. Intuitively, the
nearby non-ONPC WiFi transmitter has more weight com-
pared to a distant ONPC transmitter because the received
signal is so much higher. To deal with this, instead of cor-
relating the raw received signal strengths with the symbol,
run the signal strength measurements through a limiting
function that applies a ranking data transformation to the
received signal strengths. This ensures that all values from 1
ton are represented, wheren is the number of signal strength
samples per symbol. This ensures that the distribution of
signal strength measurements after they are transformed
is the same, regardless if there is a nearby transmitter that
produces large signal strength readings. We also subtract the
mean of the ranked samples and divide by the total number
of samples to get values between -1 and 1. We evaluate the
use of ranking compared to the raw samples in Section 5.3.

 1 -1 -1 1

Ⓧ and ∑

Access
Point

Noise Measurements

Symbol Correlation

Detected Bit

τ

-τ

Limiting
Function

Figure 6: Detecting ONPC transmissions. The access point collects noise measurements and the ONPC receiver
runs the noisemeasurements through a limiting function and correlates themeasurements with a known symbol
to detect symbols.

3 STAYIN’ ALIVE DESIGN
Stayin’ Alive is designed to know if a device is still alive even
if it is disconnected fromWiFi. As amanager of an IoT system,
it is impossible to know if a device that is unresponsive is
because it is disconnected from WiFi or because something
else occurred, like a power outage or hardware malfunction.
We found that in long-term deployments, devices disconnect
from WiFi often. Of 30 sensors we had deployed for over a
year, sensors disconnected from WiFi on average 6.75 times
per month per sensor and the average disruption time was 22
minutes, with some disruptions lasting for hours. These times
represent times when the manager of the IoT system did not
know the state of the devices. Our experience agrees with
the conclusion of Hnat et al. [15], that “homes are hazardous
environments” for wireless devices.
Stayin’ Alive uses the ability of ONPC to transmit data

beyond the range of normal WiFi. Stayin’ Alive runs on top
of the ONPC transmitter and ONPC receiver. On the WiFi de-
vice, when Stayin’ Alive detects that the WiFi device has lost
its connection, it starts transmitting data using ONPC. The
Stayin’ Alive application running on the ONPC receiver in-
terprets the received data and notifies the network manager
that the device is disconnected from WiFi but still alive.

4 IMPLEMENTATION
We briefly discuss the steps to develop and implement ONPC.
We use a synthetic wireless trace generator and controlled
experiments to ensure the implementation of ONPC works
correctly and inform our design. Then we give the details of
ONPC’s implementation on off-the-shelf hardware for each
component, to show ONPC’s viability. Finally, we describe
the implementation of Stayin’ Alive.

4.1 ONPC Development
As a proof of concept and to help understand and build the
ONCP transmitter and receiver, we first build a framework

to generate synthetic wireless traces of an ONPC transmis-
sion. To help select realistic parameters, we use noise mea-
surement traces taken by a spectrum analyzer. Generating
synthetic traces of an ONPC transmitter allows us to change
parameters about the received signal, such as the power of
the transmitter or how much interference is in the network
and run it against the ONPC receiver software. This helps
us to understand the boundaries of what the ONPC receiver
software is capable of handling as well as debug the ONPC
receiver algorithm.

After using the synthetic wireless trace generator, we de-
velop and implement the ONPC transmitter using off-the-
shelf hardware (Section 4.2). We connect the ONPC trans-
mitter to a spectrum analyzer through RF cables, adding
different amounts of attenuation to emulate distance. Using
the high-resolution samples of the spectrum analyzer, we run
the ONPC receiver software and validate that the transmitter
is working as expected at various amounts of attenuation.
Next, we implement the ONPC receiver (Section 4.4) using
off-the-shelf hardware, pulling samples from a commercial
AP (Section 4.3). We connect the ONPC transmitter to the
AP through RF cables with different amounts of attenuation.
This allows us to ensure ONPC is working correctly at vari-
ous transmission power levels while minimizing the effects
of carrier sensing and interference. Each of these steps helps
to inform the design and implementation of ONPC.

4.2 Transmitter
The transmitter is built using a Wemos D1 mini Pro [29],
which is based on the ESP8266. We use C code to interact
directly with Espressif’s SDK for the ESP8266. We set up a
hardware timer that fires periodically. This interval repre-
sents the chip rate of the transmitter. When the hardware
timer fires, either a beacon frame is transmitted into the
network (represents a one) or nothing happens (represents

a negative one), depending on the chip that is being trans-
mitted. We use the wifi_send_pkt_freedom call to inject
frames into the network.

wifi_send_pkt_freedom has a few important limitations.
First, it can only send frames that are less than or equal to
1400 bytes. Second, if called during a transmission, the call
will fail (return -1). This can occur when carrier sensing has
delayed the transmission such that the previous frame is
still being transmitted when the next frame needs to be sent.
From the SDK, there is no way to determine if the device is
transmitting and the call will fail.
In our implementation, we transmit beacon frames that

are 1400 bytes, which takes 11,423 µs to transmit and select
a chip period of 13,423 µs. This gives 2000 µs of padding
to account for carrier sensing. We select 1400 bytes as the
beacon frame size because this is the largest frame size the
ESP8266 could inject into the network. The time it takes
the access point to collect samples ranges from 5.0 ms to
6.5 ms (see Section 2.3). By sending a frame that is 1400
bytes and takes 11,423 µs to transmit, roughly two samples
will be collected during a transmission. In Section 5.1.1, we
experiment with different chip periods to find which one
reduces the effect of carrier sensing. To enable transmissions
that can be recovered with low SNR, we use a symbol with a
length of 1023 (210 − 1). With these parameters, it takes 13.73
seconds to transmit the whole symbol.

4.3 Access Point
For our access point, we use the Netgear R7000 wireless
router, running DD-WRT. DD-WRT provides ssh access so
that management commands can be run. We use the wl
phy_rxiqest command to obtain received power estimates.
Three values are returned from this command, one RSS value
for each antenna. wl phy_rxiqest has eight poorly docu-
mented options. Of the options, we use the -r flag, which
allows us to select coarse or fine grain measurements. Course
measurements are rounded to the nearest integer, and fine
measurements return RSS values to the nearest quarter dBm.
We select fine grain measurements to provide more accuracy.
We also use the -s flag, which allows us to select how many
samples should be considered when running the command.
Possible values range from 210 to 215. We select 215 so that
we can capture more of the channel in one system call. We
try the other parameters, but they do not provide any benefit
for our particular application.

The time it takes to complete the call to wl phy_rxiqest
varies depending on the amount of wireless activity. We
assume this is because the access point is decoding frames
which slows down the call. In our experience, values range
from 5.0 ms to 6.5 ms. This call is the limiting factor in

our system and dictates the rate at which we can send our
symbol.

4.4 Receiver
We implemented the receiver as a Python application. The
application logs into the AP through ssh, collects samples
(stored locally on the AP as a file), and transfers the sample
file for processing. Before correlating the noise measure-
ments with the symbol, we process the data. Since ONPC
is looking for weak signals in the noise measurements, a
nearby transmitter can negatively affect our algorithm. We
pass the samples through a limiting function, as discussed
in Section 2.4. The effectiveness of this filtering is shown
in Section 5.3. Next, the receiver correlates the limited sam-
ples with the symbol of the device it is looking for. Finally,
it determines a threshold, τ , at which a symbol will be de-
tected. τ is set to 4.0 standard deviations away from the mean
of the correlation values. If a correlation value crosses this
threshold, then a symbol is detected.

In deployments, the ONPC receiver is Ethernet connected
to home’s access point. Since processing does not need to
be done in real-time, the hardware requirements are low for
the receiver. We have run the receiver on a Raspberry Pi as
well as a 2016 MacBook Pro.

Note that the receiver does not have to be local to theWiFi
devices or access point, nor does a receiver have to be tied to
one access point. If there was a way of securely getting noise
measurements from an access point remotely, the receiver
could run in a different location. One could imagine a cloud
receiver that monitors all deployed sensors. We leave this
for future work.

4.5 Stayin’ Alive
Stayin’ Alive works in this general flow. First, it must deter-
mine what WiFi devices are not currently functioning. What
it means for a WiFi device not to be functioning and how
to determine that depends on the WiFi device and deploy-
ment architecture. For our deployed sensors, which send
data every minute, we query a database to see if a sensor
has uploaded data recently. After a certain amount of time
with no new data, Stayin’ Alive determines that the sensor is
offline. Stayin’ Alive looks up the symbol that corresponds
to the offline sensor through a database query and runs the
ONPC receiver, passing the symbol. If the receiver detects
the device’s symbol, Stayin’ Alive knows that the WiFi de-
vice is still powered on and is functioning normally but is
disconnected from WiFi. This information is reported to a
database. To reduce the possibility of a false positive, we
ensure the symbol is received multiple times and that they
are correctly spaced apart.

0 500 1000 1500 2000

Extra Padding (µs)

10

20

30

%
F

a
il
ed

Figure 7: The percent of frames failed to send across
different padding measurements (µs).

5 EVALUATION
We evaluate various aspects of ONPC and demonstrate that
ONPC works beyond the range of WiFi in an indoor and
outdoor environment. We also demonstrate that ONPC’s
MAC functions with multiple ONPC transmitters and can
function even when near powerful transmitters.

5.1 ONPC Parameters
5.1.1 Padding. As discussed in Section 2.2.2, we add padding
between the transmission and chip period to negate the
effect of CSMA. If CSMA delays a transmission, the extra
padding helps the delay not to affect the next transmission.
However, because of WiFi’s CSMA behavior, there is no way
of knowing the right amount of padding for all situations.
Depending on how many WiFi clients are present, there is
still a chance that the amount of padding is not enough to
negate the effects of CSMA. For our system, it becomes a
trade-off of adding padding to reduce the effects of CSMA and
lowering our data rate. To understand this trade-off, we run
an experiment in a moderately crowded WiFi environment,
evaluating transmissions failures as a result of carrier sensing.
The system call fails if a transmission is currently active
when injecting a frame into the network. The experiment
consists of constantly transmitting frames back to back. We
count the number of times a transmission fails with different
amounts of padding. The results are summarized in Figure 7.
As the amount of padding increases, the percent of failed
transmissions decrease. For our system, we select a padding
of 2000 µs which has a loss rate of about 5%, since it is enough
padding to reduce most the effects of carrier sensing.

5.1.2 Threshold. In our system, when the correlation is
above a threshold, it is considered a detected symbol. We set
this threshold to τ standard deviations above the mean. De-
termining how the threshold is picked affects the detection
rate and false positive rate. To understand the trade-offs, we
run ONPC on a set of data with different threshold values,
generating a receiver operating curve, shown in Figure 8.

10−5 10−4 10−3 10−2

False Positive Rate

0.75

0.80

0.85

0.90

0.95

1.00

T
ru

e
P

os
it

iv
e

R
a
te

2.2
2.5

3.0

3.5

4.0

4.5
4.6

Figure 8: Receiver operating curve for ONPC. Points
along the curve represent different threshold values.

The threshold value can be picked based on the needs of
the application using ONPC and its ability to tolerate false
positives. For Stayin’ Alive, we use a threshold value, τ , of
4.0.

5.2 Data Rate
Given the parameters used in Section 4, one symbol (PN
code) is transmitted every 13.7 seconds. There are approx-
imately as many possible codes as the PN code length. For
example, the Walsh-Hadamard code set for length N has N
orthogonal codes. A receiver could convey loд2 1024 = 10
bits of information by the code it chooses to transmit. In this
case, the bit rate is 10 / 13.7 = 0.73 bps. Alternatively, we
could select two codes and transmit some linear combination
of these two codes using a modulation likeM-ary QAM. In
this case, we would be sending loд2 M bits per symbol or
loд2 M / 13.7 bps.

While these rates may seem slow, particularly in compari-
son to standard 802.11 protocols, we note that the application
of ONPC will not be to replace WiFi. For Stayin’ Alive, as an
example, the problem of identifying whether a WiFi-enabled
sensor is powered on or off is one that takes perhaps days,
and human action, to resolve. For this application, 13.7 sec-
onds is a very quick resolution.

5.3 Nearby Transmitters
ONPC is designed to find weak signals in noise and, as a
result, is sensitive to powerful transmitters. This can occur
when a WiFi device is close to the access point, but the
ONPC transmitter is far away. The close wireless client will
have a significant impact on the RSS measurements of the
access point. This can be seen in Figure 9. The top graph
shows the raw noise measurements, and the middle graph
shows the correlation between raw noise measurement and
symbol. The green dashed line represents the correlation
threshold, and the stars are when a symbol is detected, and
a red x is a false positive. In this data collection, the ONPC
transmitter is constantly transmitting so a symbol should be

Figure 9: The top graph is noise power measurements
as received by the access point with respect to time. A
transmission occurs part way through the data collec-
tion. The bottom two graphs are the correlation with
the symbol using the noise power measurements and
ranked noise power measurements, respectively.

Figure 10: A map of the locations where ONPC trans-
mitters are placed relative to the AP location. WiFi
was unable to communicate at each location.

detected every 13.7 seconds. However, using the raw noise
measurements to cross-correlate with the symbol, only one
symbol is detected. To solve this problem, we limit the raw
noise power measurements using the rank order method,
as described in Section 2.4. Once limited, ONCP can detect
symbols even during a transmission, as shown in the bottom
graph of Figure 9. ONPC can detect the transmitted symbol,
even when another transmitter is transmitting. All other
results in this section use the rank order limiting function.

5.4 Range Enhancement
To test that ONPC works beyond the range of WiFi connec-
tivity, we separate an ONPC transmitter from an access point
until the transmitter consistently remains disconnected from

Table 1: The efficiency of ONPC at different locations.

Distance Symbols Symbols False
Loc (m) Tx Rx Positives

1 272 29 29 0
2 202 29 27 0
3 115 30 8 3
4 145 29 29 4
5 191 29 29 1
6 218 29 26 2

WiFi. We program the ESP8266’s onboard LED to flash when
the device is disconnected from WiFi. A transmitter that is
disconnected from WiFi will try to reconnect for 30 seconds.
If unsuccessful, it will run ONPC for 2 minutes before trying
to reconnect again for 30 seconds. This process is repeated.
We initially run our experiments in an outdoor location to re-
duce the effect of interference of other WiFi devices. Though
this is not the target environment for our application, Stayin’
Alive, this will allow us to understand howwell ONPCworks
compared to WiFi in an environment with less interference
compared to an indoor environment. Even in this outdoor
location, there are seven APs on 802.11 channel 1, where
ONPC is running. We repeat this experiment multiple times,
each time picking a different location for the transmitter such
that the transmitter is close to the edge of WiFi connectivity,
but not connected. The locations are shown in Figure 10. At
each location tested, ONCP was successful where WiFi was
unable to connect. Table 1 shows the symbol reception rate
and false positives for the transmitter at the six locations.
Except for location 3, each location’s symbol reception rate is
90%. These results show that ONPC works beyond the range
of WiFi. We note that the distances of our experiments are
highly dependent on many factors such as the environment,
interference, hardware, etc. The absolute distances of these
experiments are not important but rather that the range of
ONPC extends past WiFi’s range.

Next, we test the limits of ONPC at location 5. We want to
understand how much further ONPC works past the range
of WiFi. Starting at location 5, we move to three locations
away from the access point. These locations can be seen as
the blue text (top right corner) in Figure 10. The results are
shown in Table 2. At 258 m (67 m beyond location 5), the
symbol reception rate starts to drop. This shows that ONPC
extends the range of WiFi by a significant distance.

5.5 Multiple ONPC Transmitters
To test multiple ONPC transmitters, we first set up one ONPC
transmitter and measure the percent of symbols received cor-
rectly. Next, we add another transmitter at approximately the
same distance from the receiver that transmits an orthogonal

Table 2: The efficiency of ONPC at different locations.

Distance Symbols Symbols False
Loc (m) Tx Rx Positives

5 191 29 29 1
5a 220 29 28 2
5b 245 29 28 4
5c 258 29 20 4

1 2 3 4 5

Number of transmitters

0

10

20

30

40

50

60

70

80

90

P
er

ce
n
t

of
sy

m
b

ol
s

re
ce

iv
ed

Figure 11: Overall percentage of symbols received as
more ONPC transmitters are transmitting at the same
time.

symbol and measure the percent of symbols received from
both transmitters. We continue this process until we have
five ONPC transmitters transmitting orthogonal symbols
at the same time. The results are shown in Figure 11. The
percentage of received symbols decreases as the number of
transmitters increases. However, for our use case, as long as
one symbol is received occasionally, that is enough to know
if a sensor is still functioning. These results show that ONPC
works for up to five transmitters for our use case.

Next, we test howwell ONPCworks with two ONPC trans-
mitters are transmitting at the same type (orthogonal sym-
bols), but with a large disparity between the signal strengths
of the transmitters. The ESP8266 devices we use as ONPC
transmitters have controllable transmit powers. The default
value for transmit power is 82, which is the maximum value.1
Using a spectrum analyzer, we determine that setting the
power to 41 drops the signal strength by 10 dB. We can create
a signal strength disparity of 10 dB by placing two ONPC
transmitters next to each other and equal distance from the
receiver. One of the transmitters is set to the default transmit
power and the other transmitter is set to 42. Under these
conditions, the ONPC receiver can receive the symbol of the

1This value is defined in the ESP8266 SDK and does not represent a specific
unit of measure.

60

80

100 Normal

With ONPC

Unlimited 5 Mbps 1 Mbps

iperf Throughput Limit

0

2

4

R
ec

ei
ve

d
T

h
ro

u
gh

p
u

t
(M

b
p

s)

Figure 12: The effect ofONPCwhen aWiFi transmitter
is close to the AP.

Unlimited 5 Mbps 1 Mbps

iperf Throughput Limit

0

1

2

3

4

5

6

7

R
ec

ei
ve

d
T

h
ro

u
gh

p
u

t
(M

b
p

s)

Normal

With ONPC

Figure 13: The effect ofONPCwhen aWiFi transmitter
is far from the AP.

higher SNR transmitter 96.6% of the time and 24.1% of the
time for the lower SNR transmitter. This shows that even
with a large disparity in signal strength, the ONPC receiver
is still able to detect symbols from both transmitters.
We do not evaluate ONPC transmitters in a hidden ter-

minal scenario because ONPC does not depend on CSMA
for correct operation. We use orthogonal symbols to allow
multiple transmitters to transmit at once, regardless of if
they are in a hidden terminal scenario or not.

5.6 Effects on non-ONPC communication
To understand the effect ONPC has on normal WiFi trans-
missions, we run the following experiment. We place our
ONPC transmitter so that it is far enough away not to be
connected to WiFi, but running the ONPC protocol. We use
a wirelessly connected laptop as a iperf client and an Ether-
net connected Raspberry Pi acts as an iperf server. We run
iperf in UDP mode at different speeds (unlimited, 5 Mbps,
and 1 Mbps) with and without ONPC running. We place the

iperf client laptop at two locations: next to the AP and next
to the ONPC transmitter (67 meters away). We run iperf
for 2.5 minutes, collecting 150 samples, in each condition.
When the iperf client laptop is next to the AP, ONPC

only affects WiFi transmissions when a client laptop is con-
tinuously using the channel (iperf set to unlimited). The
results are shown in Figure 12. The maximum achievable
throughput, for this particular configuration, when running
ONPC deceases by 20.3% compared to when ONPC is not
running. However, when running at lower data rates, 5 Mbps
and 1 Mbps, ONPC does not affect the data rate. The decrease
of 20.3% is due to the client laptop carrier sensing the ONPC
transmitter’s transmissions. Since the ONPC transmitter is
transmitting a beacon frame half the time, we expected to
see a decrease of throughput of about 25%. When the iperf
client laptop is far from theWiFi AP, next to the ONPC trans-
mitter, ONPC does not affect the WiFi transmissions, as seen
in Figure 13. The reason we see no effect on throughput in
this situation when sending unlimited data is because the
overhead of lost frames is greater than the impact of ONPC.
The results show that ONPC as no effect on most wireless
transmissions. Only under very specific scenarios can the ef-
fect of ONPC be seen. We believe the impact of ONPC will be
unnoticeable for general use cases since research has shown
that home’s WiFi networks are underutilized [23]. If needed,
ONPC can be used sporadically rather than continuously, to
minimize its effects.

5.7 House
We deploy ONPC in a residential house. The house has three
floors, including a basement. The access point is located in
the basement and the WiFi device on the top floor, on the
opposite side of the house such that the WiFi device is no
longer connected to the AP in the basement and the ONPC
transmitter runs. We estimate that the distance between
these two devices is roughly 13 m, across three floors and
many walls. We run ONPC on channel 1, where there are
five other access points (neighbors) transmitting on the same
channel. We run ONPC continuously and collect data for 6
minutes.
In this experiment, the symbol reception rate is 51.7%,

with no false positives. Two-thirds of the way through the
experiment a nearby WiFi device transmits, causing a sig-
nificant change in correlation. This reduced the number of
symbols detected in this experiment. These results show that
ONPC works beyond the range of normal WiFi in a home
environment.

6 RELATEDWORK
Two WiFi standards already exist that support lower data
rates and longer ranges: HaLow (802.11ah) [4] and White-Fi

(802.11af) [12]. Both can increase their range in part because
of their lower center frequencies experience lower penetra-
tion losses. HaLow uses the 900 MHz band (902-928 MHz
in the US), and White-Fi runs on the TV white space fre-
quencies, 54 to 698 MHz. Other wireless protocols exist, such
as LoRa [26] and ZWave [9], that make similar trade-offs
between increasing range and reducing data rate. These pro-
tocols use different PHY layers to help increase the range. As
a result of changing the PHY and protocol, a different radio
is required, making these standards not compatible with the
standard WiFi APs used in typical residential houses (i.e.,
802.11n). Since these technologies are not widely deployed
in homes, to use one of these technologies, new access points
would need to be deployed in each participant’s home. Hu-
man subject research studies are usually cost constrained, so
buying new equipment for each home is unreasonable. For
our application, we are using a house’s WiFi network, and
when a sensor is unable to communicate, we switch to ONPC.
Since we are building on top of standard WiFi, our protocol
works with standard WiFi transmitters and receivers, adding
no extra cost.

An alternative to ONPCwould be to use an ad hoc wireless
network. Rather than each device communicating with an
AP, devices communicate with each other, creating a mesh
network. This allows wireless devices to chain together to
transmit data rather than connecting to one central node
(the AP). This approach would potentially allow a device
that is too far away from an AP to transmit data to its nearby
neighbors; however, this only works when dealing with mul-
tiple wireless devices. If you have only one wireless device
deployed, then this approach does not help. It also requires
that WiFi devices are located in such a way that they are
in range of each other. Lastly, even with a mesh network,
a critical wireless link between devices can be weak and
periodically fail. In such a case, ONPC would be beneficial.
ONPC shares similarities with WiFi backscattering [18].

WiFi backscattering allows a low powered RF device to trans-
mit and receive data. The RF device reflectsWiFi signals caus-
ing changes in RSS to transmit data and detects energy dur-
ing WiFi transmissions to receive data. Although ONPC and
WiFi backscattering both use changes in RSS and WiFi trans-
missions to convey information, ONPC differs from WiFi
backscattering in three major ways. First, WiFi backscatter-
ing uses specialized hardware to detect energy during WiFi
transmissions, whereas ONPC uses off-the-shelf components
to detect WiFi transmissions. Furthermore, WiFi backscat-
tering requires extra hardware to reflect WiFi signals. ONPC
is implemented purely in software and requires no extra
hardware. Second, WiFi backscattering uses a CTS-to-Self
frame to clear the channel while a WiFi device transmits
to the RF device, ensuring that no other devices will trans-
mit during this time. ONPC deals with other transmissions

directly by accounting for carrier sensing and does not re-
quire the channel to be clear to function. Third, the focus
of these works is different. ONPC is about extending the
range of WiFi, whereas WiFi backscattering focuses on a low
energy RF device communication at short ranges. This leads
to different system design decisions.
Long Range WiFi (LR WiFi) has been researched and de-

ployed in various places around the world, where Internet
connectivity is not readily available, such as rural areas [7].
For example, M. Zennaro et al. deployed long-range WiFi
in Malawi at a distance of 162 km [21]. S. Unni et al. set
up LR WiFi for over-the-sea communication [28]. These ef-
forts require directional antennas to be precisely pointed
to each other, and modifications to 802.11’s MAC protocol.
ONPC requires no specialized hardware and no changes to
the 802.11’s MAC protocol. Also, ONPC’s goals are different
from LRWiFi. ONPC is designed to supplement current wire-
less deployments, not supplant long-range protocols. ONPC
can complement LR WiFi; for example, Stayin’ Alive may
benefit an LR system that is reliable at setup by providing
more information about the state of the other end of the link,
when changes in weather as described in [21] make the chan-
nel unsuitable for WiFi packet reception. Also, ONPC could
communicate some relative location or angle information
in cases when one end’s mobility makes the link fail, as a
means to automatically reposition the directional antennas.
Interference detection is particularly important in cogni-

tive radio for the detection of primary users, and energy
detection methods are proposed for this purpose [5][27],
including methods referred to as transmitter detection, co-
operative spectrum sensing, and interference based detec-
tion [2]. Interference avoidance is important for any multiple
access system, and energy detection is designed to work for
arbitrary modulation types [22][8], for example, to allow
a ZigBee network to change channel when it detects WiFi
interference. While ONPC uses noise power (or energy) as a
measurement, it is not doing so for interference avoidance.
Instead, ONPC is re-purposing a sensing operation already
available in WiFi hardware to enable a different commu-
nication protocol. In this sense ONPC is more similar to
cross-technology communication (CTC) systems in which
a transceiver designed for one protocol is able to send data
to a receiver of a different protocol, e.g., BLE transmitter to
Zigbee receiver [17]. However, ONPC is not serving to cross
between two existing protocols; both ends are WiFi devices.
ONPC alters both transceivers for a new protocol on top of
WiFi to enable longer range communication, which is not
achieved in reported CTC systems. By altering both WiFi
transmitter and receiver to operate a new protocol, ONPC
is similar to [25], which uses changes in the transmit sig-
nal filter to encode extra (secret) bits in the channel state
information. These secret bits require WiFi packet reception,

thus the secret bits cannot be decoded at a longer range than
WiFi itself.

ONPC shares similarities with infrared light communi-
cations [30]. In such systems, data can be transferred in a
unipolar fashion (on or off), similar to how ONPC transmits
a beacon (on) or does not transmit a beacon (off). Infrared
light communications must also deal with interference from
other light sources, like fluorescent lights, but the infrared
channel is less crowded than the 2.4 GHz band, and infrared
interference sources tend to be stationary (time-invariant
statistics). Since infrared transmitters and receivers are de-
signed to communicate via turning an incoherent power
source on or off, they can achieve a significantly higher data
rate; while ONPC must deal with hardware that is not de-
signed for this purpose. Such systems tend to focus on the
speed of communication, whereas ONPC is focused on the
distance of communication.
Other work has been done on using WiFi as an out-of-

band communication or covert channel. Many of these works
find places in the 802.11 header to insert covert informa-
tion [13][6] or use the timing between packets [16][3]. Though
ONPC uses timing to convey information, ONPC’s goal is to
extend range, so it takes a different approach by implement-
ing a spread spectrum like technique using 802.11 frames.

7 CONCLUSION
In this paper, we present the novel protocol ONPC, which
extends the range of WiFi using standard WiFi. ONPC uses
off-the-shelf WiFi hardware and piggybacks off of existing
technologies, making ONPC inexpensive to implement and
widely deployable. Through our evaluation of different as-
pects of ONPC, we demonstrate that it works beyond the
range of WiFi. We show that ONPC is robust against nearby
transmitters and can detect transmissions evenwhen another
transmitter is transmitting. We demonstrate that multiple
transmitters can use ONPC at the same time. We success-
fully deployed ONPC in a residential house. Using ONPC, we
design and deploy an application, Stayin’ Alive, that assists
remote system managers in determining whether a device is
still functioning, even if it cannot communicate over WiFi,
solving the observability challenges of devices deployed in
difficult-to-access locations.

ACKNOWLEDGMENTS
Research reported in this publicationwas supported byNIBIB
of the US NIH under award number 1U54EB021973-01. We
are grateful for the help from our shepherd, Dr. Ashutosh Sab-
harwal, and anonymous reviewers which helped to greatly
improve the final version of this paper.

REFERENCES
[1] 2018. LinuxWireless - Monitor Mode. https://wireless.wiki.kernel.org.
[2] Mahmood Abdulsattar and Zahir A. Hussein. 2012. Energy Detection

Technique for Spectrum Sensing in Cognitive Radio: A Survey. In-
ternational journal of Computer Networks and Communications 4 (09
2012), 223–242. https://doi.org/10.5121/ijcnc.2012.4514

[3] R. Archibald and D. Ghosal. 2012. A Covert Timing Channel Based
on Fountain Codes. In 2012 IEEE 11th International Conference on
Trust, Security and Privacy in Computing and Communications. 970–977.
https://doi.org/10.1109/TrustCom.2012.21

[4] S. Aust, R. V. Prasad, and I. G. Niemegeers. 2012. IEEE 802.11ah:
Advantages in Standards and Further Challenges for sub 1GHz Wi-Fi.
Communications (ICC), IEEE International Conference on (2012).

[5] Danijela Cabric, Artem Tkachenko, and Robert W. Brodersen. 2006.
Experimental Study of Spectrum Sensing Based on Energy Detection
and Network Cooperation. In Proceedings of the First International
Workshop on Technology and Policy for Accessing Spectrum (TAPAS ’06).
ACM, New York, NY, USA, Article 12. https://doi.org/10.1145/1234388.
1234400

[6] Telvis E. Calhoun, Xiaojun Cao, Yingshu Li, and Raheem Beyah. 2012.
An 802.11 MAC layer covert channel. Wireless Communications and
Mobile Computing 12, 5 (2012), 393–405. https://doi.org/10.1002/wcm.
969

[7] Kameswari Chebrolu, Bhaskaran Raman, and Sayandeep Sen. 2006.
Long-distance 802.11B Links: Performance Measurements and Expe-
rience. In Proceedings of the 12th Annual International Conference on
Mobile Computing and Networking (MobiCom ’06). ACM, New York,
NY, USA, 74–85. https://doi.org/10.1145/1161089.1161099

[8] Chulho Won, Jong-Hoon Youn, H. Ali, H. Sharif, and J. Deogun.
2005. Adaptive radio channel allocation for supporting coexistence
of 802.15.4 and 802.11b. In VTC-2005-Fall. 2005 IEEE 62nd Vehicular
Technology Conference, 2005., Vol. 4. 2522–2526. https://doi.org/10.
1109/VETECF.2005.1559004

[9] Sigma Designs. 2018. ZWave. http://z-wave.sigmadesigns.com.
[10] embeDD GmbH. 2018. DD-WRT. https://dd-wrt.com.
[11] Espressif. 2018. ESP8266 Non-OS SDK API Reference. https://www.

espressif.com/.
[12] Adriana B. Flores, Ryan E. Guerra, EdwardW. Knightly, Peter Ecclesine,

and Santosh Pandey. 2013. IEEE 802.11af: A Standard for TV White
Space Spectrum Sharing. IEEE Communications Magazine 51 (2013),
92–100.

[13] L. Frikha, Z. Trabelsi, and W. El-Hajj. 2008. Implementation of a
Covert Channel in the 802.11 Header. In 2008 International Wireless
Communications and Mobile Computing Conference. 594–599. https:
//doi.org/10.1109/IWCMC.2008.103

[14] Solomon W. Golomb and Guang Gong. 2004. Signal Design for Good
Correlation: For Wireless Communication, Cryptography, and Radar.
Cambridge University Press, New York, NY, USA.

[15] Timothy W. Hnat and et al. 2011. The Hitchhiker’s Guide to Successful
Residential Sensing Deployments. In Proceedings of the 9th ACM Con-
ference on Embedded Networked Sensor Systems (SenSys ’11). ACM, New

York, NY, USA, 232–245. https://doi.org/10.1145/2070942.2070966
[16] R. Holloway and R. Beyah. 2011. Covert DCF: A DCF-Based Covert

Timing Channel in 802.11 Networks. In 2011 IEEE Eighth International
Conference on Mobile Ad-Hoc and Sensor Systems. 570–579. https:
//doi.org/10.1109/MASS.2011.60

[17] Wenchao Jiang, Zhimeng Yin, Ruofeng Liu, Zhijun Li, Song Min Kim,
and Tian He. 2017. Bluebee: a 10,000 x faster cross-technology commu-
nication via phy emulation. In Proceedings of the 15th ACM Conference
on Embedded Network Sensor Systems.

[18] Bryce Kellogg, Aaron Parks, Shyamnath Gollakota, Joshua R. Smith,
and David Wetherall. 2014. Wi-fi Backscatter: Internet Connectivity
for RF-powered Devices. In Proceedings of the 2014 ACM Conference
on SIGCOMM (SIGCOMM ’14). ACM, New York, NY, USA, 607–618.
https://doi.org/10.1145/2619239.2626319

[19] Philip Lundrigan. 2019. ONPC Receiver. https://github.com/NET-
BYU/onpc_receiver.

[20] Philip Lundrigan. 2019. ONPC Transmitter. https://github.com/NET-
BYU/onpc_transmitter.

[21] M. Zennaro, C. Fonda, E. Pietrosemoli, A. M. S. Okay, R. Flickenger,
and S. Radicella. 2008. On a long wireless link for rural telemedicine
in malawi. In Proceedings of the 6th International Conference on Open
Access.

[22] Peizhong Yi, A. Iwayemi, and Chi Zhou. 2010. Frequency agility
in a ZigBee network for smart grid application. In 2010 Innovative
Smart Grid Technologies (ISGT). 1–6. https://doi.org/10.1109/ISGT.
2010.5434747

[23] Ramya Raghavendra, Jitendra Padhye, Ratul Mahajan, and Elizabeth
Belding. 2009. Wi-Fi networks are underutilized. Microsoft Research
Technical Report (2009).

[24] Raspberry Pi Foundation. 2018. Raspberry Pi. https://www.raspberrypi.
org.

[25] Matthias Schulz, Jakob Link, Francesco Gringoli, and Matthias Hol-
lick. 2018. Shadow Wi-Fi: Teaching Smartphones to Transmit Raw
Signals and to Extract Channel State Information to Implement Prac-
tical Covert Channels over Wi-Fi. In Proceedings of the 16th Annual
International Conference on Mobile Systems, Applications, and Services
(MobiSys ’18). 256–268.

[26] N. Sornin and et al. 2015. LoRa Specification 1.0. http://www.lora-
alliance.org.

[27] Mansi Subhedar and Gajanan Birajdar. 2011. Spectrum sensing tech-
niques in cognitive radio networks: A survey. International Journal of
Next-Generation Networks 3, 2 (2011), 37–51.

[28] S. Unni, D. Raj, K. Sasidhar, and S. Rao. 2015. Performance mea-
surement and analysis of long range Wi-Fi network for over-the-sea
communication. In 2015 13th International Symposium on Modeling
and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt).
36–41. https://doi.org/10.1109/WIOPT.2015.7151030

[29] Wemos. 2018. WEMOS D1 mini Lite V1.0.0. https://www.aliexpress.
com/store/1331105.

[30] K. K. Wong and T. O’Farrell. 2003. Spread spectrum techniques for
indoor wireless IR communications. IEEE Wireless Communications
10, 2 (April 2003), 54–63. https://doi.org/10.1109/MWC.2003.1196403

https://wireless.wiki.kernel.org
https://doi.org/10.5121/ijcnc.2012.4514
https://doi.org/10.1109/TrustCom.2012.21
https://doi.org/10.1145/1234388.1234400
https://doi.org/10.1145/1234388.1234400
https://doi.org/10.1002/wcm.969
https://doi.org/10.1002/wcm.969
https://doi.org/10.1145/1161089.1161099
https://doi.org/10.1109/VETECF.2005.1559004
https://doi.org/10.1109/VETECF.2005.1559004
http://z-wave.sigmadesigns.com
https://dd-wrt.com
https://www.espressif.com/
https://www.espressif.com/
https://doi.org/10.1109/IWCMC.2008.103
https://doi.org/10.1109/IWCMC.2008.103
https://doi.org/10.1145/2070942.2070966
https://doi.org/10.1109/MASS.2011.60
https://doi.org/10.1109/MASS.2011.60
https://doi.org/10.1145/2619239.2626319
https://github.com/NET-BYU/onpc_receiver
https://github.com/NET-BYU/onpc_receiver
https://github.com/NET-BYU/onpc_transmitter
https://github.com/NET-BYU/onpc_transmitter
https://doi.org/10.1109/ISGT.2010.5434747
https://doi.org/10.1109/ISGT.2010.5434747
https://www.raspberrypi.org
https://www.raspberrypi.org
http://www.lora-alliance.org
http://www.lora-alliance.org
https://doi.org/10.1109/WIOPT.2015.7151030
https://www.aliexpress.com/store/1331105
https://www.aliexpress.com/store/1331105
https://doi.org/10.1109/MWC.2003.1196403

	Abstract
	1 Introduction
	2 ONPC Design
	2.1 Overview
	2.2 Transmitter
	2.3 Access Point
	2.4 ONPC Receiver

	3 Stayin' Alive Design
	4 Implementation
	4.1 ONPC Development
	4.2 Transmitter
	4.3 Access Point
	4.4 Receiver
	4.5 Stayin' Alive

	5 Evaluation
	5.1 ONPC Parameters
	5.2 Data Rate
	5.3 Nearby Transmitters
	5.4 Range Enhancement
	5.5 Multiple ONPC Transmitters
	5.6 Effects on non-ONPC communication
	5.7 House

	6 Related Work
	7 Conclusion
	References

