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Abstract—We consider the radio window attack, a privacy
threat in which an attacker monitors the wireless link over a
period of time, recording the channel state information (CSI)
across multiple packets and uses a model to detect, estimate, or
classify human movements. To prevent such privacy attacks on a
wireless channel, we propose modifying radio training (MoRTr),
a novel system for Wi-Fi MIMO-OFDM devices that alters
transmitted symbols over time, space and frequency via a pseudo-
random process that mimics the changes due to human activity,
particularly the training symbols that are used to measure
the wireless channel by the receiver. We perform extensive
experiments to demonstrate that an attacker is thwarted by the
approach. At the same time, we demonstrate that any receiver
is able to use its measured CSI to demodulate the data without
any significant degradation in performance, despite the fact that
the receiver is not measuring the true CSI.

I. INTRODUCTION

Modern wireless networks provide for the privacy and
integrity of transferred data over the wireless channel by means
of cryptography and encryption algorithms in the upper layers
of communication protocols. However in today’s networks, the
privacy and security can be breached at the physical layer
by monitoring radio windows [1] in which an eavesdropper
can observe activities from behind walls. The radio waves
from any transmitter, for example, a Wi-Fi device in a home,
are altered as they propagate near moving objects and bodies
present in its vicinity. The characteristic of these changes can
be measured from a distance as radio waves penetrate non-
metal walls and objects. An adversary, without physical access
to a private area, can use a receiver outside its perimeter or
walls to measure the changes in the signal from the transmitter
to learn about the activities or locations of people present in
that environment. Such measurements have been shown to be
capable of human presence detection [2], fall detection [3],
motion detection [4], activity and gesture recognition [5]–[7],
keystroke detection [8]. These attacks can go undetected as
they do not require an attacker’s device to transmit. Thus,
data security is no barrier to a radio window attacker since
radio signals, even from those networks secure against data
eavesdropping, still penetrate walls and can be measured. Fur-
thermore, RF sensing can be performed with widely available
commercial off-the-shelf (COTS) devices [9]. Both received
power and channel state information (CSI) measurements can
be accessed via firmware or software. In this paper, we focus
on CSI measurements because these are an integral part of

multicarrier multiple-input multiple-output (MIMO) protocols,
used to achieve high data rates in multipath channels.

Channel measurements reveal significant short and long
term variations due to human activity, while normal variations
without human activity are generally minimal. In a radio
window attack, an attacker monitors the wireless link over
a period of time, recording the CSI across multiple packets
and recording temporal, spatial, frequency or wavelet-domain
characteristics, and use a model to detect, estimate, or classify
the human movements that may (or may not) have occurred.

To prevent such privacy attacks on a wireless channel, we
propose modifying radio training (MoRTr), a novel system
for Wi-Fi MIMO devices that alters transmitted symbols,
particularly the training symbols that are used to measure the
wireless channel by the receiver. In MoRTr, the symbols are
modified over time, space and frequency via a pseudo-random
process that mimics the changes due to human activity by
changing the amplitude and phase of each antenna’s signal.
Since the statistics of the artificial changes across multiple
dimensions match those from actual human-caused changes,
and the signal characteristics are distinct at different receiver
antennas, a passive attacker is unable to distinguish the two
even if they know the protocol, therefore degrading their
ability to detect actual human activity.

One of the key challenges in designing MoRTr is being
able to mimic real human gestures well enough to fool an
eavesdropper. To do this, a transmitter must know how such
gestures effect the received signal. Moreover, it must be able
to mimic multiple gestures in an unpredictable order. The
transmitter must know how to randomly modify the signals
characteristics and match the spatio-temporal statistics of such
gestures, i.e., it must have a prior knowledge of the statistical
model of how a transmitted RF signal would change in
amplitude or phase across multiple antennas while an action
is performed by a human, and be able to generate signals
that vary randomly with this model. MoRTr generates such a
statistical model for a human activity from a set of real CSI
measurements.

MoRTr protects the privacy of a person in an indoor envi-
ronment from an eavesdropper sensing the wireless channel at
the same time protecting the integrity of data to a legitimate
receiver. We make the following contribution in this work:

1) We introduce a novel protocol, MoRTr, that modifies
Wi-Fi transmit signals in such a way that the measured



CSI of the received signal mimics human activity in a
way that thwarts a radio window attacker from obtaining
reliable activity information from the signals.

2) We implement the Wi-Fi protocol IEEE 802.11n on a
software defined radio (SDR) platform that can transmit,
receive, and decode data packets and perform channel
estimation. We implement MoRTr, in software, on this
platform for experimental evaluation.

3) We evaluate MoRTr in a series of experiments that test
1) the performance of a receiver that demodulates data
from a MoRTr transmission, and 2) the ability of a radio
window attacker to perform gesture recognition, and in
particular, distinguish between a real and a fake (MoRTr-
generated) gesture. Our experimental results show that
MoRTr is able to fool an eavesdropper with specific fake
gestures, while genuine receivers are able to demodulate
the signal and obtain the payload without any significant
degradation in the bit error rate.

II. BACKGROUND AND RELATED WORK

A. MIMO-OFDM and CSI

Commercial Wi-Fi devices, operating on 802.11n/ac stan-
dard, use multiple-input multiple-output (MIMO) and orthog-
onal frequency division multiplexing (OFDM) configuration
to achieve a high data rate, increased reliability and a low
bit error rate (BER). Generally, two diversity techniques are
available for MIMO, Spatial diversity, and Spatial multi-
plexing. For obtaining spatial diversity, identical copies of
data are sent over multiple transmit and receive antennas in
parallel to improve reliability because it is unlikely that all
paths will be degraded at the same time due to noise or
interference. In contrast, spatial multiplexing divides the data
into independent chunks and sends over multiple antennas
in parallel to improve data rate. OFDM on the other hand
divides the available 20MHz bandwidth into 64 sub-carriers
thus, making the system bandwidth efficient. Each of these
sub-carrier can be extracted at the receiver to estimate channel
frequency response in the form of channel state information
(CSI) allowing the channel sensing to be more accurate. The
receiver uses the CSI measurement to equalize the channel
effect and subsequently, for data demodulation. The CSI is
a matrix with size [M × N × K], where M is the number
of transmit antennas, N is the number of receive antennas
and K is the number of sub-carriers used in the OFDM
modulation. Letting the transmitted signal vector on subcarrier
k be x(k) = [x0(k), x1(k)]

T , and the received signal vector
on subcarrier k be y(k) = [y0(k), y1(k)]

T ,

y(k) = H(k)x(k) + z (1)
where z is additive noise and H(k) is the channel response
for frequency subcarrier k. While we consider a 2x2 MIMO
channel, as shown in Figure 1, the channel matrix with
coefficient between each antenna pair can be represented as

H(k) =

[
h0,0(k) h0,1(k)
h1,0(k) h1,1(k)

]
.

Fig. 1. Channel matrix coefficients for 2x2 MIMO

The changes in CSI over time captures information about
the motion of objects and people, as each subcarrier’s state
is impacted by multipath. A complex-valued non-stationary
channel can be represented by

h(k, t) =

N−1∑
i=0

ai(t)e
−j2πfkτi(t), (2)

where ai(t) is the amplitude gain and τi(t) is the propagation
delay at time t, and fk is the center frequency of the kth
subcarrier [10]. The amplitude |h(k, t)| and phase ∠h(k, t)
changes with time t whenever the transmitter or receiver move,
or when objects and people present in the environment move.

Open-source software has been developed to obtain CSI
from commercial routers and laptops with certain types of net-
work interface cards (NICs) [9], [11]. Several existing works
extract CSI from these NICs and use these for wireless sensing
applications including device free human activity recognition
[12], for keyboard stroke behaviour recognition (e.g., WiKey
[13]), for occupant activity recognition [14], and for moni-
toring, logging and taking necessary actions during sleeping
(e.g., sleep guardian [15]). CSI is susceptible to eavesdropping
by third parties in the coverage area of a transmitter and can
be used by them to detect the motion, gestures or location
of a human present in between the transmitter and receiver
nodes while the victim is oblivious to this information leakage.
Figure. 2 depicts such an attack.

Fig. 2. Attack on privacy using channel state information (CSI).

B. Related work

Most of the indoor wireless nodes are equipped with omni-
directional antennas which radiate radio signal in all directions
and are prone to eavesdropping. One approach for defending
against this eavesdropping is to use a directional antenna such
that the signals can be directed to the intended receiver and



thereby reducing the possibility of the eavesdropper obtaining
the signal [16]. While Wi-Fi standards like 802.11n/ac have
adopted MIMO and are capable of beamforming, these require
a handshake phase between the transmit and receive nodes.
Therefore, if any party is not compatible with the beamforming
protocol, the eavesdropper will be able to receive the signal.
Furthermore, even when transmit beamforming is in place, an
attacker may re-position its node to find the line of sight path
to receive a higher signal to noise ratio.

Another approach to defend against an eavesdropper is
to add artificial noise [17] where an authorized transmitter
generates a formulated interfering signal in such a way that
the eavesdropping channel is degraded while the legitimate
channel is intact. The main difference between such an idea
and our work is that we intend to fool the eavesdropper with
patterns of real human gesture and not with random noise.
Researchers have developed counter measure techniques [18]
where the signal to noise ratio at the attacker is significantly
degraded. Similarly, WiGuard defeats the attacker by causing
interference with the attacker’s node resulting in a distorted
CSI thereby reducing the rate of successful attacks [19]. In
another related work, an interference-negligible RF sensing
shield [20] preserves authorized RF sensing and incapaci-
tates eavesdroppers by using external hardware to distort the
transmitter’s signal. In the same vain, [21] uses an additional
supporting node called the forwarded that receives the original
transmitted signal, modifies it properties, and forwards the
modified signal back to the wireless channel. An attacker node
receives both the original and the modified signal resulting in
a distorted CSI measurement.

To the best of our knowledge, there is no prior work on
modification of training symbols of a wireless transmitter
for defending against the radio window attack. In this paper,
we perform extensive experiments to demonstrate that such
modification on the transmitter deceive the attacker but do not
significantly influence the performance of data extraction and
demodulation at the genuine receiver.

III. THREAT MODEL

We consider the scenario where an attacker tries to capture
a gesture performed by a targeted person from CSI time series
data in a MIMO wireless channel.

• The attacker can position its wireless device in the
vicinity of a stationary legitimate transmitter node in an
indoor environment or behind a wall where it cannot be
discovered easily.

• The attacker’s node is equipped with tools for CSI extrac-
tion and has the capability to post process the data for
noise reduction and obtain meaningful CSI measurement
using machine learning.

• The attacker acts as a passive device, and does not have
any access to the targeted node physically or remotely to
tamper with the transmitted signals.

• There is only one eavesdropping node in the vicinity of
transmitter, and number of antennas at both transmitter

and eavesdropper are equal. The challenge posed by
multiple attack nodes is beyond the scope of this paper.

IV. RF SENSING IN MIMO-OFDM

In this section, we describe how any receiver (including
an eavesdropper) receives and processes the broadcast signal
from a MIMO-OFDM transmitter for channel estimation and
payload demodulation. A receiver must use the protocol’s
known training symbols or preamble in order to perform
several tasks required for reliable communication and RF
sensing. In any MIMO-OFDM protocol, the training symbols
are predefined and available to both transmitter and receiver.
These unmodulated symbols are used by the receiver to detect
the start of packet, synchronize to the symbol timing, correct
frequency offset, and measure the change in the transmitted
signal due to the multipath channel. This last task, known
as channel estimation, is required to counteract the channel’s
effects and demodulate the payload portion of the packet.
In our threat model, an eavesdropper only cares about the
preamble section of the packet as its goal is to measure the
channel for human gesture recognition, while a legitimate
receiver is primarily concerned with the demodulation of the
payload. In this section, we first describe an example frame
structure. Next, we explain how the channel is estimated from
the received preamble in order to mathematically show how
both the eavesdropper and the legitimate receiver perform
channel estimation. Finally, we describe the impact of the
channel estimate on payload demodulation.

A. Frame structure

We use the IEEE 802.11n standard as an example of the
OFDM-MIMO frame structure. This WiFi standard has three
different preamble formats designed to operate across the
a/b/g/n standards [22]. Of these three preamble formats, we
use the greenfield mode in our experimental work. We note
that the methods developed in this paper can also be applied
to other modes with minor modifications. The structure of the
greenfield frame, and receiver tasks performed with each sub-
field of this frame are described as follows:

• High-throughput short training field (HTSTF): Symbols
in this field are defined in the 802.11n standard. In time
domain, after appending a cyclic prefix (CP), the HTSTF
is a 10x repetition of the identical sixteen samples, which
then is used for frame detection and synchronization.

• High-throughput long training field (HTLTF): These sym-
bols are used for frequency offset estimation, correction,
and channel estimation. For each transmit antenna, there
is one HTLTF, which then allows CSI estimation across
a TX / RX pair. In our experiments, we use two transmit
antennas, therefore, we have two HTLTFs.

• High-throughput signaling fields 1 and 2 (HTSIG1 and
HTSIG2): These fields contain information about the
modulation and coding scheme, packet length, and the
type of forward error coding used. In our tests, we
exclude the signaling fields, as our goal is not to replicate
the exact protocol but to be able to estimate CSI in a



similar manner and then apply modification. We assume
that the receiver has all the necessary information to
decode the packet.

• Payload: These fields carry the data, and in addition,
use 4 subcarriers for pilot signals. Other subcarriers are
modulated with QPSK, QAM-16 or QAM-64. The pilot
symbols are used for phase correction after the channel
is equalized.

Note that while the HTSTF and HTSIG fields are identically
sent from each TX antenna, the HTLTF field signals are differ-
ent at each TX antenna and sent in an orthogonal pattern. Let
L(k) be the HTLTF symbol value as a function of subcarrier k,
and let xs(k) be the M×1 vector transmitted during HTLTF-
s. Consider the M×M matrix X(k) = [x0(k), . . . ,xM−1(k)]
which describes the transmitted signal across antennas (rows)
and across HTLTF fields (columns). The 802.11n protocol
defines an orthogonal matrix P such that

X(k) = L(k)P, (3)
where L(k) is a scalar multiplying each element of P . For
example, when there are M = 2 transmit antennas,

P =

[
1 −1
1 1

]
(4)

In other words, L(k) is sent equally on each transmit antenna
during HTLTF-1, but sent with orthogonal linear combinations
on the M antennas in later HTLTFs. In general for OFDM-
MIMO channel estimation, the transceivers must know the
structure of these fields in frequency and the spatial domains
in order to estimate the CSI as described next.

B. CSI Estimation

Channel state information must compute the channel gain
for each antenna pair, which we refer to as the spatial
dimension, and across subcarriers, which we refer to as the
frequency dimension k. The MIMO channel estimates are
computed with the received HTLTFs y(k) in each HTLTF
field s from s ∈ {0, . . . , N − 1}. In a MIMO system, each
receive antenna measures a linear combination of the transmit
signal as described in (1). Using (3), we have

Y (k) = L(k)H(k)P + z, (5)
where Y (k) = [y0(k), . . .yN−1(k)], and ys(k) as the N -
length vector of received signal value during HTLTF-s on
subcarrier k. Following symbol synchronization and frequency
offset correction, the receiver receives the HTLTF fields. It
removes the cyclic prefix and performs the FFT to extract the
values Y (k) for each subcarrier. Given that P−1 = 1

M PT , we
can estimate H(k) (for any k that L(k) 6= 0):

Ĥ(k) =
1

ML(k)
Y (k)PT (6)

E.g., for M = 2, the top left element of Ĥ(k) is

ĥ0,0(k) =
1

2L(k)
(y0,0(k)− y0,1(k)). (7)

C. Channel equalization

We describe how, in fields other than the HTLTF, the
receiver equalizes the channel to estimate the transmitted sym-
bols from its measurements y(k) as given in (1). To recover the
transmitted symbols x(k), the receiver must invert the channel
matrix, using channel equalization. As we already calculate a
channel estimate Ĥ(k) in (6), our next step is to invert the
response of the channel to recover the transmitted data x(k).
One computationally efficient method of equalization is the
zero forcing (ZF) method. The ZF method is a linear equalizer
that corresponds to minimizing the inter-symbol interference.

To estimate x̂(k), we need to find a matrix W (k) that will
invert Ĥ(k), that is, W (k)Ĥ(k) is the identity matrix. The ZF
method uses the pseudo inverse,

W (k) = (HH(k)H(k))−1HH(k), (8)
where superscript H is used to denote the Hermitian matrix.
The transmit signal estimate x(k) can then be obtained from

x̂(k) = W (k)y(k). (9)
Note that ZF is not optimal in terms of noise reduction.

While inverting the channel, the ZF method may unduly
amplify the noise at frequencies where the rank of channel
response is low. To overcome this problem, other equalization
algorithms can be used to improve performance at the expense
of computational complexity. Our MoRTr method is not depen-
dent on any equalization method. Using a more robust W (k)
will improve the payload demodulation performance of both
the eavesdropper and desired receiver. In our implementations,
we use a ZF equalizer for testing and comparing the per-
formance of payload demodulation at the legitimate receiver
before and after our proposed modification is applied; better
equalization methods would equally improve both cases. The
same channel equalization method is applicable even if we
modify the transmit signal as discussed in next section.

D. Payload demodulation

Once the channel equalization is complete, a legitimate
receiver is ready to extract the remaining part of the frame,
the payload. The payload, in addition to the data symbols,
contains pilot symbols which are used by the receiver for phase
estimation and correction of data symbols.

The final step is to demodulate the data. The receiver
applies (9) to estimate the transmitted symbol values x(k)
for each transmit antenna and subcarrier k. These complex
values are then used in demodulation. In our experiment, we
implement QPSK demodulation on each subcarrier and stream
as a proof of concept quantification of MoRTr’s minimal
impact on demodulation performance. However, we note that
the modulation is typically chosen adaptively based on the
available SNR and will have little effect on MoRTr.

E. Channel estimation to measure a human activity

With the procedure described in Section IV-B, an attacker
estimates the channel coefficients for all (or any) subcarrier(s)
to understand how CSI varies over time. We use Ĥ(k, t) to
refer to the channel estimate on subcarrier k for packet t. The



Fig. 3. Estimated CSI amplitude over time for all subcarriers (each plotted
with a different color) while a person moves their hand twice vertically.

attacker observes CSI for packets t ∈ {0, . . . , T − 1}. The
variations in Ĥ(k, t) over time are due to noise, interference,
measurement error, and any gesture or activity performed in
the vicinity of the transceivers. For RF sensing, Ĥ(k, t) is
filtered over all subcarrier and over all packet t to reduce the
noise and error, and to determine the changes in the CSI from
its long-term or static environment values [8].

Different activities lead to distinct changes in CSI amplitude
and phase [23] that are correlated over space, frequency, and
time. We model these changes in the channel as follows.

H(k, t) = H̄(k, t)Q(k, t), (10)
where H̄(k, t) is the static channel (without any activity) and
Q(k, t) is the multiplicative activity impact function. This
multiplicative activity impact function allows us to model
variations in both phase and amplitude of the signal.

We show an example of our measurements in Figure 3,
where the CSI amplitude is plotted for all subcarriers, for
each packet received over the time when a hand gesture is
performed. Here, two deep fades are observed, first when
the person moves their hand in an upward direction, and
second, when they bring it back down. A CSI-based activity
recognition method first collects a large amount of labelled
CSI data to train a classifier. Once trained, common human
gestures can be recognized from eavesdropped measured CSI
data. In our work, We implement fake gesture patterns to
confuse an eavesdropper.

F. CSI Denoising

As discussed in Section IV-B, the estimated raw CSI is ex-
tremely noisy. A receiver or an eavesdropping node measuring
CSI must denoise the signal first to extract the information
that it requires to detect a specific gesture. There are various
methods to remove noise from the estimated CSI. These
include moving average [24], median filter [25], principal
component analysis (PCA) [26], wavelet filter [27], Hampel
filter [28] and many more. We follow the two steps described
in [8] to remove the noise. First, we use a Butterworth low
pass filter (B-LPF) to eliminate high frequency noise and then,

use PCA to reduce the dimensions of the CSI and capture the
most important components.

V. MODIFICATION OF RADIO TRAINING

Wireless channels are broadcast media by nature. We ac-
knowledge the fact that an eavesdropper can record a transmit-
ted MIMO-OFDM signal. Furthermore, we acknowledge the
need for sending training symbols from a transmitter so that
the desired receiver can estimate the CSI and thus successfully
perform demodulation. These two facts make it possible for an
adversary, even without authorization, to estimate and monitor
the CSI for activity. In this section, we describe how we
modify the transmit signal to falsify the CSI measured by an
adversary while preserving the ability of the desired receiver
to demodulate the payload.

The intuition behind MoRTr is that any measurement of the
received training symbol is a convolution of the transmitted
training symbol and the channel. By modifying the training
symbol at the transmitter, we impose changes in the CSI any
receiver will measure. Furthermore, if we vary these changes
randomly over time in a way unknown to the eavesdropper
they would appear to them to be changes due to the channel.
If these changes are indistinguishable from the complex-valued
spatial, temporal, and frequency-domain statistics of changes
caused by actual human activity, the eavesdropper would not
be able to distinguish a faked channel variation from a real
one. The introduced ambiguity thus makes the detection and
classification of genuine human activity unreliable.

We consider a legitimate transmitter, a legitimate receiver,
and an eavesdropper node, with M , N and E number of
antennas, respectively. Let Htr be the channel between the
legitimate transmitter and the intended legitimate receiver and
Hte be the channel between transmitter and eavesdropper. The
transmit signal vector for each antenna can be represented as
x(k) = [x0(k), . . . , xM−1(k)]

T . Then, the received signal at
the eavesdropper ye(k) = Htex(k) and the desired received
signal at the legitimate receiver yr = Htrx(k) are a function
of the choice of x(k) at the transmitter. We exploit this
modification of x(k) over time to maximize the confusion
at the eavesdropper.

While measuring the CSI of a true gesture, we observe that
it affects both the amplitude and the phase of the received
signal due to constructive and destructive interference. A
temporal change is observed on each frequency subcarrier
component with slightly different channel frequency responses
on each spatial stream of TX-RX antenna pairs. Therefore,
to create a fake gesture, we modify the transmit symbols
in the temporal, frequency, and spatial domains. We need a
pre-defined statistical model for a normal gesture; with that
model we can generate a random change that would simulate
a gesture.

A. Building a Statistical Model

To create a statistical model for a gesture, MoRTr assumes
that measurements of CSI while people perform various ac-
tions and/or gestures, G, are available a priori. MoRTr fakes



TABLE I
SYMBOLS USED IN EQUATIONS AND THEIR DESCRIPTION

Symbols Description Symbols Description
M Number of transmit antennas N Number of receive antennas
K Number of subcarriers y(k) Received signal vector on subcarrier k
x(k) Transmit signal vector on subcarrier k z Additive noise

hM,N (k)
Channel coefficient between M th transmit and N th
receive antenna on subcarrier k H(k) Channel response matrix on subcarrier k

t Packet index a Amplitude gain
τ Propagation delay fk Center frequency
L(k) HTLTF symbol on subcarrier k P Orthogonal mapping matrix
s Number of HTLTF W (k) Pseudo inverse matrix
Q(k, t) Multiplicative activity impact function gt Data for all subcarriers due to gesture for packet t

br
Data for all subcarriers and for all packets for a single
gesture R Total number of experiments for a single gesture

T Total number of packets µr Sample mean
Cr Co-variance matrix U Left eigenvector
S Diagonal matrix of eigenvalues J Fake gesture pattern

d
Vector of v independent zero mean Gaussian random
variable ∆(k) Modified transmit symbol on subcarrier k

these gestures to fool an eavesdropper. The measurements
of CSI corresponding to these gestures can be done via
offline experimentation prior to deployment of any network
using MoRTr, or these can be done online for a particular
deployed network in the environment of interest. All these
measurements are then stored in a database, and we assume
the legitimate transmitter has access to it over some secure
channel that the eavesdropper cannot access.

In our work, we record fifty CSI measurements for each of
four real gestures: hand movement in the vertical direction,
action of a punch, pick an object up from the ground, and
action of push between the transceiver nodes. Each fifty of
these unique gestures present similar but slightly different
patterns of variation of the measured CSI, as we now show.

To estimate the multiplicative effect of a gesture on the
wireless channel, during our experiments, we record CSI
measurements on a link starting from before the start of the
gesture through the end of the gesture, H(k, t), over frequency
subcarrier k and time t, where H is the M×N channel matrix.
Denoting the CSI before the gesture starts as H̃ , we estimate
the multiplicative effect of the gesture on the channel as,

Q̂(k, t) =
[
HH(k, t)H(k, t)

]−1
HH(k, t)H̃(k, t). (11)

The matrix Q̂(k, t) is an M×N matrix like H but it estimates
the multiplicative change in the channel due to the gesture
performed at time t on subcarrier k. We also define q(k) as
a MN × 1 vector in which we linearize the MN elements
of Q̂(k) into a column vector. Next, we stack these channel
vectors to consolidate the channels measured at different
frequencies k and samples t:

gt =

 q(0)
...

q(K − 1)

 , br =

 g0

...
gT−1

 , (12)

where gt is the data for all subcarriers due to the gesture at
time sample t, and br is the data for all time t = 0, . . . T − 1,
the entire duration of the gesture. Thus, br contains measure-

ments for a single gesture experiment r, with CSI across space,
frequency, and time.

Now, we must build a statistical model of this gesture br

over R repeated experiments (i.e., r = 0, . . . , R − 1), so that
we can later generate a random simulation of the channel
changes in a way that accurately represents this gesture. Any
failure to model the true correlation structure across multiple
experiments of the same gesture will give the eavesdropper the
chance to distinguish between the fake and the true gesture.

Using the data recordings, we calculate the sample mean
µr = 1

R

∑R−1
r=0 br, and the sample covariance matrix, Cr:

Cr =
1

R− 1

R−1∑
r=0

(br − µr)(b
r − µr)

H (13)

To decompose the covariance matrix, we use singular value
decomposition (SVD),

Cr = ŨSŨH , (14)
where Ũ is the left eigenvector matrix and S =
diag(λ20, . . . , λ

2
MNTK−1) is matrix of eigenvalues. Note that

Cr has at most v = min(MNTK,R) non-zero eigenvalues.
Typically, we expect R < MNTK since the product MNTK
will be large. Therefore, Ũ is a MNTK × v matrix of the
eigenvectors with positive eigenvalues. We store Ũ in the
transmitter for later generation of a fake gesture.

B. Online Generation of a Fake Gesture

To create a fake gesture we generate d, a vector of v
independent zero mean Gaussian random variables, where the
ith element has λi variance. Then, we generate data for a fake
gesture as:

J = Ũd + µr. (15)
J represents the pattern that matches the spatial, temporal, and
frequency variations of an experimentally recorded gesture.
We then reshape the vector J in the reverse manner as
in equation (12), to create TK different matrices J(t, k),
essentially, one M ×N matrix for each subcarrier k and time
sample t.



The matrices {J(t, k)}k are used at time t to alter the
original transmit signal vectors {x(k)}k, that is, to alter the
complex-valued signals on the M transmit antennas being sent
to convey the data in the packet sent at time t. In MoRTr,
instead of {x(k)}k, the transmitter sends a modified transmit
symbol, which we denote ∆(k) = [∆0(k), . . . ,∆M−1(k)]T .
∆(k) is an M length vector containing the complex amplitude
sent on each antenna,

∆(k) = J(t, k)x(k). (16)
Once the eavesdropper receives the modified symbol, it

measures the received vector of HteJ(t, k)x(k) rather than
Htex(k). While x(k) is known during the training symbols,
the eavesdropper estimates HteJ(t, k) as the CSI; there is
no way for the eavesdropper to recover Hte itself. Note that
there is no way for the legitimate receiver to estimate the
true CSI either. However, during equalization, eavesdropper
(and legitimate receiver) can estimate the pseudo-inverse of
HteJ(t, k) (and HtrJ(t, k)) and thus obtain the sent data.
Even when the eavesdropper obtains the sent data, it is unable
to distinguish between a fake and a real gesture.

VI. HARDWARE AND SOFTWARE IMPLEMENTATION

We implement MoRTr in order to quantify its performance
in real-world situations. We need to demonstrate that the
modification is transparent to the desired receiver, as well
as that an eavesdropper will be unable to distinguish a fake
gesture created with MoRTr from a genuine human gesture. To
be as realistic as possible, we implement MoRTr to run on top
of IEEE 802.11n. We choose 802.11n because it is certainly
a common MIMO-OFDM standard in use, and additionally,
it is the basis for the PHY layer in 802.11ac and 802.11x.
There are no fundamental changes that would be needed to
implement MoRTr with higher M,N possible in these newer
generations of 802.11.

We implement MoRTr using Python on a laptop connected
to a universal software radio peripheral (USRP) National
Instruments / Ettus Research B-210 software-defined radio
[29]. Each of the B210 is installed with two antennas. We
experiment with one device as transmitter, one as receiver, and
one as eavesdropper. MoRTr interacts with the USRP through
hardware drivers (UHDs).

VII. EXPERIMENTATION AND PERFORMANCE ANALYSIS

In this section, we experimentally evaluate the performance
of MoRTr using our implementation. Our goal is to understand
the capability of our system in a real-world environment while
an eavesdropper carries out a radio window attack. Therefore,
to evaluate our system’s performance, we focus on:

1) MoRTr’s ability to deceive an eavesdropper attempting
to reliably observe a gesture; and

2) The effect of the transmit symbol modification on a
legitimate receiver’s ability to demodulate a packet’s
payload.

We test MoRTr’s ability to fake more than one gesture
type. During each experiment, we use the offline method as

described in V-A. We carry out the experiments in an indoor
environment with the transmitter and the receiver node at a
similar height, but 6 meters apart. We separately record the
CSI at the eavesdropping node during multiple trials of the
four real and four fake gestures. After applying CSI denoising,
we plot the CSI magnitude. Figure 4(a) plots four real hand
gesture CSI measurements over time. Figure 4(b) plots the
spatio-temporal signals generated by MoRTr to simulate a
hand gesture, and Figure 4(c) plots the measured CSI at the
eavesdropper of a fake gesture over the four antenna pairs
(for a single subcarrier). Although space limitations prevent
us from plotting genuine and MoRTr-generated CSI streams
for all subcarriers, gestures, and antenna pairs, we observe that
MoRTr does capture the general time frequency characteristics
of a true gesture. Figure 5 compares the real and fake gestures
in the eavesdropper’s measured CSI for a single channel for
different types of gestures.

A. Distinction & Classification of Real and Fake Gestures

Once an eavesdropper node estimates the CSI with methods
presented in Section IV, it can now attempt two things - first,
distinguish between real and fake gestures; second, correctly
classify the different human activities.

To evaluate the eavesdropper’s ability to perform these
two tasks, we assume that the attacker follows a supervised
learning based approach to perform gesture recognition and
classification. We also assume that the eavesdropper is aware
of MoRTr and can generate fake CSI modifications just as the
legitimate transmitter can. Learning algorithms in general can
recognize activities by comparing a test set with a training
set. There are a number of supervised learning algorithms
that provide different levels of accuracy based on the quality
of acquired signals. In our experiment, we use and compare
four such algorithms, support vector machine (SVM), logistic
regression (LR), decision tree (DT), and naive Bayes (NB).

To prepare for privacy attacks, the eavesdropper measures a
large number of both real and fake gestures. The eavesdropper
labels each gesture as fake or real and stores it in its training
database. The eavesdropper uses this database to train its
classifiers. We collect a test set for the eavesdropper and use
it to train each learning classifier.

During the attack, the eavesdropper measures the CSI and
applies its learning algorithm to distinguish between real
and fake gestures of each possible type. Figure 6 shows
the performance, with a confusion matrix, using the SVM
algorithm, which has approximately the same performance as
the other algorithms (LR, DT, and NB) we evaluate. It can
be seen from the confusion matrix that an attacker is largely
unable to distinguish between a real and fake human gesture,
for any of the four gestures that we test. For example, a real
punch is classified as either a fake or a real punch, equally
likely, and is almost never confused with a different gesture
and the activities are correctly classified with more than 80%
accuracy.



(a)

(b)
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Fig. 4. (a) Measured CSI during real hand gestures, (b) MoRTr-generated
transmit modification signals for fake hand gestures, (c) Eavesdropper-
measured CSI during fake hand gestures.

(a)

(b)

(c)

Fig. 5. CSI measured at eavesdropper during real (left) and fake (right) for
the gestures : (a) Punch, (b) Push and (c) Pickup

Fig. 6. Confusion matrix of different real and fake gestures based on support
vector machine algorithm.



TABLE II
COMPARISON OF MEAN BER DURING PERFORMING REAL GESTURE AND

WHILE MODIFICATION IS APPLIED

Bit Error Rate
w/out MoRTr w/ MoRTr p-value

Hand Gesture 0.00048 0.00049 0.66
Punch 0.00039 0.00044 0.85
Push 0.00043 0.00046 0.76
Pickup 0.00042 0.00042 0.61

B. Demodulation Performance

To confirm that MoRTr does not degrade normal communi-
cation, we measure the bit error rate at the legitimate receiver
both with and without MoRTr. We compare the received bits
in error with each packet’s total number of bits and compute
the mean error rate over 10000 packets, around 500 bits each.

The bit error rate (BER) values presented in Table VII-B are
high for both cases, with and without MoRTr, in comparison to
generic wireless network performance. A wireless node operat-
ing using an 802.11 WiFi protocol incorporates a forward error
correction (FEC) mechanism [30] which corrects any bits that
are received in error and improves the overall performance. In
our framework, we did not implement FEC, as our goal was
not to improve the received bits accuracy but to fairly compare
the performance when the symbols are modified. However,
Table VII-B shows that no significant degradation is observed
in the mean BER when comparing demodulation performance
with and without MoRTr. We also compute the p-value with a
null hypothesis that the two methods have identical BER vs.
alternate hypothesis that the two are different. All p-values
are greater than 0.05, indicating that there is no significant
difference between the two bit error rates.

VIII. CONCLUSION

To defend against radio window attacks, we have developed
and experimentally demonstrated a novel idea to secure CSI
by altering the transmit signal in time, frequency and space to
generate random human gestures that match the statistics of
actual gestures in order to thwart an eavesdropper from being
able to know when the actual gestures occurred. We present
B210 USRP test setup, implement the PHY of a WiFi MIMO-
OFDM link, measure the channel state information, and im-
plement our proposed modification MoRTr at the transmitter.
Our experimental results show that, with this modification, an
eavesdropper is unable to distinguish between real and fake
human gestures. Simultaneously, the legitimate receiver is able
to extract and demodulate the payload of MoRTr-generated
packets without any significant performance degradation.
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