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Abstract—Accurately predicting path loss in wireless chan-
nels is essential for effective network planning, particularly
in dynamic spectrum scenarios where users must minimize
interference to other devices. We evaluate multiple path loss
prediction methods on three large city-scale datasets, testing
out-of-distribution predictions to assess the robustness of each
technique.

Surprisingly, interpolation methods outperform computation-
ally intensive physics-based techniques and complex machine
learning (ML) models. In our evaluation, a radial basis function
interpolator featuring a linear kernel emerges as the most accu-
rate method due to utilizing local information while producing
a smooth interpolation surface for OOD regions. Even a simple
linear interpolation model is more accurate on average than a
sophisticated physics+ML method, demonstrating the efficacy of
simpler approaches in practical wireless channel prediction.

Index Terms—path loss models, path loss estimation, received
signal strength prediction, interpolation

I. INTRODUCTION

Predicting the path loss for a wireless channel is a cru-
cial problem in network planning, especially in a dynamic
spectrum setting where the safe coexistence of multiple users
of a wireless channel depends on accurate estimations of the
expected interference to and from other users. For example,
Tadik et al. [1] propose a Digital Spectrum Twin which
can estimate received signal strength (RSS) from sources
to determine if wireless users can transmit while meeting
minimum interference thresholds which protect other users.

Recent works have proposed novel techniques for predicting
path loss on a channel [2]–[5], but these methods have not
been extensively evaluated in the challenging setting of out-
of-distribution (OOD) prediction, where test inputs are not
drawn from the same distribution as training data inputs;
e.g., when test samples are drawn exclusively from regions
with no training measurements. Specifically, [3], [4] evaluate
only on simulated data in extremely simplified environments,
while [2], [5] do not consider OOD prediction. In this paper,
we present a thorough evaluation of several RSS prediction
methods. We compare basic interpolation methods that use
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exclusively local information, a technique that predicts RSS
based on the estimated shadowing loss [2], and one technique
that combines physics-based estimations with training data,
adapted from [5].

We consider a problem setting where the transmitter or
receiver of the channel is in a fixed location and the other
device is mobile. We predict RSS values at the location of
this mobile device, which is not near any training samples.
Ultimately, we find that a radial basis function (RBF) interpo-
lator with a linear kernel is more accurate on average than all
other techniques. This includes a complex physics+ML model
adapted from [1] which uses features based on the geometry
of the environment. These results indicate that as with many
interpolation problems, the smoothness of the interpolation
surface is essential for accuracy in sparse regions.

II. PROBLEM SETTING

We consider the problem of predicting RSS between a
stationary device (base station, access point, or fixed sensor)
and a secondary device at a known location. Given a digital
surface model (DSM), a stationary device locations, and RSS
measurements for many locations relative to the stationary
device, the RSS estimation problem is to determine the RSS
at unseen locations. We also assume we have a high-fidelity
(≤ 1 m resolution) DSM map of the region of interest, which
includes height for both natural and artificial features, such
as ground elevation, buildings, and trees. Challenges in this
setting include shadow fading introduced by obstacles and the
time-varying nature of wireless channels. Due to the random
variations in channel conditions, RSS predictions that match
a particular set of training data may not resemble the average
channel conditions or measurements taken at a different time.

A. Demonstrating Robustness through Test Set Selection

In many machine learning problems, training and test data
are randomly sampled from the same distribution, which is
appropriate if future samples are also known to come from
this distribution. But when conditions are known to change,
such as in wireless channels, this random selection of data
leads to model bias and a failure to generalize to unfamiliar
inputs, as described in [6]–[8].



Fig. 1. Plots of Rx and Tx locations with building heights. Left to right: SLC1+Grid2, SLC2+Grid5, ANTW+Grid10.

TABLE I
DATASET INFORMATION

SLC1 SLC2 ANTW
Frequency [MHz] 462.7 3543 868
Area [km2] 2.2× 2.4 1.4× 1.4 6.1× 5.6
Stationary Devices 23 (Rx) 6 (Tx) 15 (Rx)
Num. RSS Samples 95,517 77,639 57,777
Meas. Start/End Apr25 - Nov23 June 27-29 Nov16 - Feb5
Meas. Days 5 3 65

When attempting to deploy RSS prediction over some
region of interest, it is prohibitively expensive and difficult
to sample RSS at high density in every area of the region. We
explore a setting where RSS samples are available to train a
prediction model, but RSS samples cannot be obtained from
some portion(s) of the region of interest. We use the approach
used in our previous work [6], where we divide the region of
interest into an N×N grid and each cell in the grid is assigned
randomly to the training or test sets with probability 0.8
and 0.2, respectively. This ensures some separation between
measurements used to fit or train an RSS prediction model,
and the samples used to evaluate the model.

We consider grid sizes of N=2, 5, and 10. Examples of grid
separation for each dataset are shown in Fig. 1. A smaller grid
size represents a large distribution shift, where the OOD test
data differs significantly from the training distribution, with a
larger grid size implying the opposite.

III. EVALUATION DATASETS AND OOD RSS PREDICTION

We use three large datasets of RSS measurements, with
two captured on the University of Utah campus in Salt Lake
City, USA (SLC1, SLC2), and one public set of measurements
from Antwerp, Belgium (ANTW). Here we describe each of
the datasets and the specific details that are relevant to RSS
prediction, with details provided in Table I and plots of the
measurement locations and environment shown in Fig. 1.

A. Dataset Descriptions

1) SLC1: The first dataset at 462.7 MHz in the FRS band
was taken from [9] and is described in detail in [6]. In
these measurements, a 1 W mobile transmitter moved through

campus, with the RSS values recorded at stationary receivers.
There are three different types of receivers with differing
hardware and antenna placement, with placement on cell
towers, rooftops, and at ground level on the side of buildings.
The mobile sensor was carried while walking, on a bicycle,
and while in a car, so the spatial density of measurements
varies throughout. Some measurements in this dataset are
known to have interference from third-party sources.

Regarding the RSS prediction problem, the three different
types of sensors have dramatically different noise floors and
sensitivities, due to the different antenna placements, hardware
types, and gain settings. For example, rooftop radios had
an RSS above the noise floor at distances approaching and
sometimes exceeding 1 km, but the shorter cell towers had a
more limited range of 300-400 m. Ground-level receivers had
a range between 400-600 m.

2) SLC2: In the same environment as SLC1, a single mo-
bile receiver was carried on foot and in a car while capturing
continuous-wave transmissions from 8 m tall cell towers.
Transmission was at 3.54 MHz. There were 4 or 5 active
transmitters at a time, with a total of 6 different transmitters
used. Due to the limited power of these transmitters, we only
considered locations in a smaller area of 2 km2, compared
with the 5 km2 of SLC1. Compared with SLC1, the method
of collection guaranteed minimal third-party interference.

3) ANTW: The final dataset is a subset of the data from
[10]. A set of RSS measurements were taken in Antwerp,
Belgium. LoRaWAN transmitters were attacked to mail trucks
and location data was transmitted to nearby cell towers, which
recorded the RSS.

Unlike the SLC datasets, researchers could not control the
movement of mobile devices, so the samples are highly skewed
in terms of density, with samples concentrated in certain areas,
with little to no coverage for much of the region of interest.

IV. PATH LOSS PREDICTION TECHNIQUES

In this section, we introduce the propagation models eval-
uated in this work. We explore two standard interpolation
methods, Linear and RBF interpolation. Then we introduce
a loss field technique that estimates the amount of loss due to
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Fig. 2. Predicted RSS values over SLC1, Grid10 for RSS prediction methods. Left to right: Linear, RBF, CELF, TIREM++.

shadow-fading between any two points in the region [2], and
finally, we explore TIREM++, an ML model based on [5] that
uses predictions from the TIREM propagation model as well
as other environmental features for RSS estimation.

An example of each of the RSS prediction methods (Linear,
RBF, CELF, TIREM++) is shown in Fig. 2. The Linear
interpolation surface consists of triangles between points in
the training data, while the RBF model appears very similar,
though with a considerably smoother interpolation surface,
without the sharp discontinuities of the Linear model. The
CELF predictions have a generally similar appearance and are
reasonably smooth, though there are large curves throughout
the predictions, which are an artifact of the method used to
estimate the loss field. TIREM++ predictions seem to have
a much lower noise floor than all other predictions. There
are rays visibly radiating out from the stationary device,
indicating line-of-sight paths in different directions. On very
close inspection, the prediction has a distinct graininess which
is likely due to noise in the input features.

a) Interpolation Methods: We applied two prepackaged
interpolation methods from SciPy, LinearNDInterpolator, and
RBFInterpolator [11]. The linear interpolation method creates
triangles between the input data and then applies barycentric
interpolation on each triangle. The other method is radial basis
function interpolation, which constructs an interpolant based
on a linear combination of radial basis functions. We used a
linear kernel with smoothing parameter S = 1. Typically an
RBF kernel is nonlinear, allowing the interpolation function to
handle nonlinearities in the data, but our experiments found
that the linear kernel was more accurate for our validation sets.

Interpolation can only be done within the convex hull of
the training data. To provide full interpolation of the region
of interest, we first fit a simple log-distance path loss model
to the training set, then use this model to predict the RSS at
the four corners of the region of interest and add these four
predicted RSS values to the training data. This allows us to
interpolate over the entire region.

b) Channel Estimation via Loss Field (CELF): Next, we
explored a loss field estimation method, CELF, from [2]. This
technique proposes a site-trained loss field model to com-
pensate for the shadowing loss error in the log-distance path
loss model. First, a training dataset is applied to fit the log-
distance path loss model. Then CELF utilizes Bayesian linear

regression to learn the underlying loss field from the modeling
error. The loss field explains the propagation loss due to the
shadowing effect from the site’s obstructions, e.g., buildings
and terrain. At prediction time, the path loss is calculated by
summing the field values between a transmit/receive pair on
the map. The primary advantage offered by CELF is that
it provides physics-based loss estimates without using any
environmental information from a DSM.

c) TIREM-based Predictions: The Terrain Integrated
Rough Earth Model (TIREM) [12] is a propagation model that
uses the elevation of a path between a transmit/receive pair to
estimate the path loss. Along this 1D path, a simple diffraction
model is used to calculate the expected signal strength.

In [5], Tadik et al. propose a simple neural network which
uses environmental features to learn a correction factor for
the TIREM prediction. These features include the elevation
angle and line-of-sight between Tx and Rx, distance to the
closest obstacle, path length, diffraction angles, shadowing
angles, and the original TIREM prediction. We do not provide
the (x, y) coordinates of each location to the model. This
is done to produce a generalized model that predicts RSS
solely based on environmental features, rather than from local
information. The intent is that for OOD regions where no
local information is available, the model can use environmental
features to accurately predict RSS.

Using these features, we train a simple fully connected
neural network to predict path loss. Unlike in [5], where
the neural network is extremely small and simple to provide
interpretability, we use a model with 3 hidden layers of
200 neurons each. We use a learning rate of 10−3, with L2
regularization with weight decay of 10−6 and dropout rates of
0.1 for input features and 0.01 for hidden layers, and train for
40,000 epochs. For each dataset, we combine the RSS values
from all stationary locations into a single training set and train
a single model to predict RSS values (with three models used
for SLC1, where there are three types of stationary devices).

V. RESULTS AND ANALYSIS

In this section, we present the results for different RSS
predictors. Each RSS method was trained/fit on the same set of
data, and evaluated on an OOD Test set, which consists of RSS
samples in the OOD regions. We apply our grid-separation to
each dataset to select the OOD Test set with grid sizes of 2×2,
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Fig. 3. Average absolute error on OOD Test samples across different grid
sizes.
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Fig. 4. Average absolute error on OOD Test samples for each stationary
device for Grid2.

5×5, and 10×10, in order from largest distribution shift to
smallest. The large cells on a 2×2 grid represent an entire
quarter of the region without training data.

In Fig. 3, we display the average error on the OOD Test
samples across different grid sizes for each dataset. We see
that on average, the RBF interpolator is consistently more
accurate than other methods. This holds across different grid
sizes for all of our three datasets. This is a surprising but
crucial result: simple data-based interpolation methods are
more accurate than complex physics and ML-informed
models, even on OOD samples. We discuss some possible
explanations for this behavior later in this section.

To provide more insight into the accuracy of each method,
Fig. 4 shows the average error for each stationary device
individually for grid size of 2. We can see that Linear and
RBF methods typically track together, with more variation
for the CELF and TIREM++ methods. Error for all methods

Fig. 5. RSS values in the SLC2 dataset, showing high variance for samples
taken within a small area.

varies dramatically from device to device, which we found
depends on the device’s proximity to an OOD boundary and
the diversity of training data available.

One major difference between each of the three datasets is
the tightness of the error averages across all four methods.
For ANTW, all four methods have extremely similar average
error, with only a few exceptions. This trend is less notable but
still present in the SLC1 results. The existence of this trend
implies that achieving accurate RSS predictions may depend
largely on the configuration of training data, more than on the
prediction method used.

The underlying cause of the higher spread for SLC2 is
unclear, though it may be due to highly varying channels
during data collection. An example of this high variance is
shown in Fig. 5. Some RSS values taken during the collection
of the SLC2 data are shown in this scatter plot. Particularly
on the left side of the image, we see differences in RSS over
30 dB within just a few meters. This type of high variation
along multiple journeys on the same path is common in this
dataset, indicating highly varying channels.

a) CELF-Analysis: CELF performs poorly at a grid size
of 2 on the SLC1 and SLC2 data, as shown in Fig. 3. This
is expected behavior since an entire quarter of each region is
OOD which has little intersection with the coverage area by
the training dataset. As a result, CELF relies only on the loss
field prior and thus cannot accurately observe the shadowing
effect for that OOD area. In other words, CELF for Grid2
predictions falls back to a correlated log-normal shadowing
model where the loss field for the OOD region is a pure zero-
mean log-normal random field.

An example of this is shown in Fig. 6, which compares
RBF and CELF predictions for one stationary sensor in
SLC1+Grid2. RBF underpredicts the signal strength near the
transmitter since pure interpolation fails to consider propa-
gation physics whereas CELF predictions in the bottom left
OOD region have a large positive error since the training data
provides no shadowing information about the OOD region
for CELF. Without the information about these loss-inducing
obstacles, the RSS in this region is overestimated by CELF.

In Fig. 3, we see CELF’s accuracy drastically improve with



Fig. 6. RBF and CELF prediction error in SLC1+Grid2 for Sensor 9. Positive
error indicates higher predicted RSS. RBF underpredicts the signal strength
near the sensor, while CELF overpredicts values in the bottom left.
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Fig. 7. Average error on OOD Test samples for each stationary device in
ANTW+Grid10.

larger grid size (smaller distribution shift) for the SLC1 and
SLC2 data, but not for ANTW data, due to the inconsistent
density of samples and sparse coverage of the OOD region.

Like the more accurate interpolation methods, CELF does
not use DSM information. The worse accuracy may be due
to the highly varying channels demonstrated in Fig. 5, or
due to a discretization process that introduces some loss of
information. Due to memory limits the resolution could not
be increased, but it’s possible that with memory optimizations
CELF could be improved to match the performance of the
other interpolation methods.

b) TIREM++: Sometimes Effective with Limited Data:
Although TIREM++ is sometimes competitive with the
simpler interpolation methods, there are few cases where
TIREM++ is significantly more accurate on average than any
other techniques. One example is for SLC2 Device 2, where
TIREM++ is more than 3 dB accurate on average, as shown
in Fig. 4. Another is in the ANTW+Grid10 results shown
in Fig. 3. Sensor 15 in this setting had 2-5× higher error
than all other devices, which we show in context in Fig. 7.
For Sensor 15, the average error for all prediction methods
increases drastically. Error for the purely data-based methods
(Linear, RBF) jumps to approximately 60 dB, while error for
CELF and TIREM++ jump to 40 dB and 25 dB, respectively.

To explore this case further, in Fig. 8 we show a scatter
plot of the actual prediction errors for RBF and TIREM++
predictions for this high-error sensor. The nearest training
sample to Sensor 15 is over 500 m away, so the Linear and
RBF interpolation models cannot predict a high RSS value
without local information. Although the CELF model predicts
a higher RSS value than the interpolation models, these

Fig. 8. RBF and TIREM++ prediction error for OOD Test samples for Sensor
15 in ANTW+Grid10. Positive error indicates higher predicted RSS. Without
any training points nearby this sensor, TIREM++ gives better RSS predictions
than RBF interpolation.

predictions are still skewed by an underinformed path loss
model. We observe this phenomenon for a few other sensors,
where TIREM++ is more accurate on high-RSS samples close
to isolated stationary devices in OOD regions. This indicates
that although the TIREM++ model is less accurate on average,
it can be more accurate in cases where few training samples
are available. This is exactly the result we would hope for
from the TIREM++ approach.

However, TIREM++ does not always excel in circumstances
that we might consider to be ideal. For each of the 132
configurations of stationary devices and grid separations, we
found 26 scenarios where the stationary device was isolated
from training samples. In these cases, we would expect
TIREM++ to outperform other techniques, but we found
it only outperformed other methods on 7 of the 26 cases.
However, as shown in Fig. 8, these improvements can be
significant.

A. Discussion

Over all of the 132 scenarios (44 sensors with 3 grid
separations each), RBF is the most accurate model for 96/132
scenarios, or 72.7% of the time. The poor overall performance
of the TIREM++ model is somewhat surprising, since this
model uses detailed environmental features to make predic-
tions, which far more information provided than for any of
the other techniques. This may be due to model regularization
or limited capacity which prevents the overfitting of the data,
while also preventing high accuracy. If this is the case, an
improved model may be able to achieve RBF-level accuracy
while handling the few edge cases where TIREM++ is more
accurate.

The significantly better performance of the RBF model can
be attributed to a few key features. First, a combination of
all training samples within a certain radius will be used to
estimate RSS. RBF interpolation is based entirely on very
local features, so the success of this method indicates that
local information provided by training samples is extremely
useful for predicting RSS values. This local information proves
useful for prediction on samples that are near the OOD region
boundaries.



TABLE II
USE CASE SCENARIOS OF RSS PREDICTION METHODS

Runtime [s] Needs Data
Method Application Train Infer DSM Needs
Linear - 1.7 2.75 No High
RBF ID 9.8 65 No High
CELF ID/OOD 2.8 1.1 No Medium
TIREM++ OOD, isolated BS <800 3.8 Yes Low

Second, the RBF model produces smooth and continuous
interpolation for areas with no local information, as shown in
Figure 2. As long as no RSS peaks occur in the unseen areas
(such as when a transmitter is located there), the smoothness
of the interpolation function allows the model to generalize
well beyond the training data.

On the other hand, TIREM++ does not utilize the local
information as well RBF, but it does provide additional context
due to the dependence on TIREM predictions and geometric
features. CELF also provides this context, though more limited
due to the lack of environmental information. Consequently,
CELF and TIREM++ models can be more accurate in sce-
narios where the stationary device is isolated from training
samples.

As was shown in Fig. 5, high variance in training data may
provide a greater challenge for RSS prediction. All of our
datasets have a relatively limited collection scope, spanning at
most several months, and in some cases as limited as 3 days.
With a relatively short time for collection, the relationship
between the RSS training data, the predicted RSS values, and
the actual average channel conditions cannot be determined.

In Table II we present use case scenarios of the different
RSS prediction methods, according to the results seen here.
We provide rough runtimes for training and inference over all
of SLC2. For TIREM++ we also include estimates of the time
to calculate TIREM predictions and environmental features.

RBF is best used for In-Distribution (ID) predictions when
training data is diverse and covers many locations, especially
near transmitters. CELF is recommended when there is no
DSM map of the environment, especially for OOD regions.
TIREM++ is useful when training data is not diverse or
does not cover base station locations, since the ML model
does not depend on local information to learn the impact of
environmental features.

VI. CONCLUSION

In conclusion, accurately predicting path loss in wireless
channels is fundamental for dynamic network planning and
coexistence. In this work, we explored various techniques
for predicting RSS in wireless channels, focusing on OOD
scenarios where test inputs are separated from training data.

Our evaluation included Linear and RBF interpolation meth-
ods, a loss field estimation technique (CELF), and a physics-
informed machine learning model (TIREM++). Surprisingly,
simple interpolation methods consistently outperformed more
complex models across different datasets and with different
amounts of distribution shift represented by the grid size.

In particular, the RBF interpolation is most accurate, due
to effectively leveraging local information from training data
while providing a smoother interpolation surface compared to
other models, providing accurate predictions in OOD regions.

While CELF and TIREM++ occasionally showed greater
accuracy in scenarios with isolated stationary devices in OOD
regions, their overall performance was inconsistent. CELF in
particular is ill-suited for OOD scenarios with large distribu-
tion shifts since all measurements are uninformative of the
OOD region. Nevertheless, CELF is consistently more accu-
rate than TIREM++ for smaller distribution shifts. TIREM++
failed to consistently outperform RBF interpolation, likely due
to the noisy input features and overall lack of smoothness in
OOD regions.

Our findings underscore the importance of simplicity and
local information in path loss prediction for wireless channels.
RBF interpolation, with its ability to capture local variations
and generalize well beyond training data, emerges as a robust
and efficient method for RSS prediction. Future research could
explore ways to enhance interpolation methods by integrating
physics-based or ML insights, particularly in scenarios with
limited training data. In addition, we plan to evaluate addi-
tional ML models used for RSS prediction.
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