
LLOCUS: Learning-based Localization Using Crowdsourcing

Shamik Sarkar1 (Shamik.Sarkar@utah.edu), Aniqua Baset1, Harsimran Singh1, Phillip Smith1

Neal Patwari2, Sneha Kasera1, Kurt Derr3, and Samuel Ramirez3
1University of Utah, 2Washington University in St. Louis, 3Idaho National Labs

ABSTRACT

We present LLOCUS, a novel learning-based system that uses mobile

crowdsourced RF sensing to estimate the location and power of un-

knownmobile transmitters in real time, while allowing unrestricted

mobility of the crowdsourcing participants. We carefully identify

and tackle several challenges in learning and localizing, based on

RSS, in such a dynamic environment. We decouple the problem of

localizing a transmitter with unknown transmit power into two

problems, 1) predicting the power of a transmitter at an unknown

location, and 2) localizing a transmitter with known transmit power.

LLOCUS first estimates the power of the unknown transmitter and

then scales the reported RSS values such that the unknown transmit

power problem is transparent to the method of localization. We

evaluate LLOCUS using three experiments in different indoor and

outdoor environments. We find that LLOCUS reduces the localiza-

tion error by 17-68% compared to several non-learning methods.

CCS CONCEPTS

• Networks → Location based services; Mobile ad hoc net-

works; Mobile and wireless security.

1 INTRODUCTION

Localization of a radio-frequency (RF) transmitter is a fundamen-

tal requirement in wireless and mobile networks. In addition to

supporting typical benign applications including location-based ser-

vices, localization can also help locate sources of malicious behavior,

e.g., a wireless spectrum jammer. However, large scale placement

and management of static receivers over wide geographical areas,

for the purpose of localizing malicious jammers, is not feasible or

too expensive. Ad hoc crowdsourcing, where a large number of

nodes are recruited for a short duration at different locations and

at different times to assist in localization in a dynamic manner,

offers a practical approach to localization of such RF transmitters.

The overhead of performing wide scale RF sensing gets shared

among the crowd. In the crowdsourced RF sensing scenarios, if the

crowdsourcing sensors/receivers are mobile, their received signal

strength (RSS) measurements do not offer a consistent fingerprint,

i.e., when a transmitter is to be located, the participating receivers

may not be located at any of the locations where the receivers

were present when the training measurements were made. Thus,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Mobihoc ’20, October 11–14, 2020, Boston, MA, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8015-7/20/10. . . $15.00
https://doi.org/10.1145/3397166.3409142

Figure 1: Crowdsourcing model that enables LLOCUS

despite the fact that fingerprint methods revolutionized RSS based

indoor localization [21, 26], there is no fingerprint method, to date,

which addresses localization when both the ends (the ‘ends’ being

transmitters and receivers) are mobile. Instead, when ‘both ends are

mobile’, localization algorithms resort to methods based on radio

wave propagation path loss models (PLMs) [23], which we refer to

as non-learning solutions.

In this work, we consider the realistic crowdsourced spectrum

sensing scenario in which all the transmitters and the receivers can

be mobile, and the transmitters, possibly spectrum violators trying

to hide their locations, can modify their transmit power. We inves-

tigate an RSS-based machine learning approach for this scenario to

overcome the problem of inconsistent fingerprints, and at the same

time improve the localization accuracy with respect to the PLM

based localization methods. In many scenarios, the peculiarities

of the RF environment cannot be incorporated in a PLM. In our

work, we learn environment-specific models using diverse training

data that can accurately capture the RF environment. We exploit

crowdsourced RF sensing on commodity mobile devices, whose

feasibility has been demonstrated in recent works [2, 9], for diverse

data collection across space and time. We stick to RSS-based local-

ization as RSS measurements are easily available on commodity

mobile devices, in contrast to angle of arrival measurements that

require specialized hardware, and time of arrival measurements

which require receiver synchronization [20].

We present LLOCUS, a novel supervised learning-based system

that uses crowdsourced RF sensing to estimate the location and

power of mobile transmitters in near real time, while allowing un-

restricted mobility of the crowdsourcing nodes. Furthermore, when

multiple transmitters transmit simultaneously, LLOCUS can detect

the number of active transmitters and localize each of them. To the

best of our knowledge, our work is the first to explore supervised

learning for localization in this generalized mobility scenario. LLO-

CUS can be used for localizing unauthorized transmitters [7] with

unknown power; locating incumbent or secondary transmitters for

dynamic spectrum access [15, 22]; all using crowdsourced mobile

devices rather than a static infrastructure deployed for this purpose.

Crowdsourcing model: A variety of RF sensing nodes, having

unrestricted mobility, participate in crowdsourcing, as shown in

Figure 1. These nodes interact with a cloud-based central controller

(CC), via cellular network or WiFi, which sends instructions that

Mobihoc ’20, October 11–14, 2020, Boston, MA, USA Sarkar et al.

Training
database Learn localization

function, L

Learn power estimation function, P

Interpolate
training database

Sensing
data Interpolate online entry

Scale
RSS

Estimate
TX power

Trim training database Estimate
TX

location

Learn L
P from training

L from training

TRAINING PHASE ONLINE PHASE

IFVR flow IVVR flowDecision block whether IFVR or IVVR is usedFlow common to IFVR, IVVR

IVVR
IFVR

Figure 2: Overview of learning and prediction in LLOCUS

specify the operation mode (transmitter or receiver), frequency

band, and duration of operation to the participants. These nodes

continuously report their sensing information (measured RSS and

device locations, obtained via GPS or any indoor localization sys-

tem) to the CC. Since reporting of sensing information results in

energy and bandwidth overhead, the participants must be incen-

tivized for their contributions [10, 19]. However, we do not investi-

gate any incentive framework in this paper. During data collection

in the training phase, the CC operates one of the mobile nodes as a

transmitter and the remaining nodes as receivers. To ensure that

the training transmissions are spatially diverse, the role of trans-

mitter is passed periodically to different participants. The collected

data is combined into a training database, which is used by the

learning module of LLOCUS, to learn parameters for models that

characterize the RF environment. During the online phase the CC

operates all the participating nodes as receivers. As soon as a new

batch of sensing data arrives, using the current sensing data and

the learned models, the prediction module of LLOCUS estimates

the transmit power and location of the active transmitter.

Challenges in LLOCUS: There are three major challenges in

our learning-based localization:

(a) Learning when both ends are mobile: Unlike traditional learning-

based localization systems [21, 26], we cannot assume the presence

of static reference devices in LLOCUS. This creates a challenge,

which we call both ends are mobile, in forming the feature set for

learning. Since the transmitters can be mobile, and the position

as well as the number of the receivers change with time, the re-

ported RSS values cannot be used directly as features for learn-

ing/prediction. Each RSS value is associated with a receiver loca-

tion, thus, using the reported RSS values as features would lead to

a different feature set for every batch of sensing data.

(b) Sparsity of training: Since the training transmitters are crowd-

sourced, the number of transmitter locations, for which we have

RSS measured by the training receivers, depends on the training

transmitters’ mobility. Thus, the number of unique transmitter lo-

cations in the training database could be sparse with respect to the

area of interest. However, our learning must be general enough

to make accurate predictions even when the online transmitters’

locations do not belong to the set of training transmitters’ locations.

(c) Transmit power variability: If the training transmitters use a

fixed transmit power, then the model learned from the training data

will be useful in making predictions only if the online transmitters

use the same power as the training transmitters. Since the online

transmitters are unknown, we may have no prior knowledge about

their transmit power. Thus, the transmit power variability problem,

if not tackled carefully, may render the learned model inefficient.

Overview of LLOCUS:We decouple the problem of localizing a

transmitter with unknown power into two problems, 1) predicting

the power of a transmitter at an unknown location, and 2) localizing

a transmitter with known power. In the online phase, LLOCUS

first estimates the transmitter’s power and then scales the RSS

measurements, as shown in Figure 2, such that the transmit power

variability problem is transparent to the localization method. We

first explain our solution for the localization problem, and then

describe how we estimate the transmitter’s power.

For solving the both ends are mobile problem, we handle the

receivers’ mobility by interpolating every batch of reported RSS

at a set of static, virtual locations that act like anchors. This set

of interpolated RSS values can then be used as features for learn-

ing/prediction. We propose two approaches: interpolation at fixed

virtual receiver locations (IFVR) and interpolation at variable vir-

tual receiver locations (IVVR). We show that IVVR helps achieve

higher localization accuracy than IFVR, while IFVR is more time

efficient, as explained in Section 3.1. Based on the desired accuracy

and computing resources available, one can choose to use LLOCUS

with either IFVR or IVVR.

Next, to handle transmitter mobility, we explore two localiza-

tion algorithms, a kNN prediction method, and a regularized radial

basis interpolation method1, that address the sparsity of training

problem. These localization methods use the interpolated RSS val-

ues to learn a function (denoted by 𝐿 in Figure 2) that relates the

RSS at the virtual receiver locations to the transmitter’s location.

The learned function, 𝐿, is later used to localize the transmitters

in the online phase. The localization methods are oblivious to the

receivers’ mobility by virtue of the RSS interpolation.

For estimating the power of an online transmitter, without know-

ing its location, we use the observation that, if the power of a trans-

mitter changes, the average of RSS measured by the receivers near

the transmitter would also change, irrespective of the transmitter’s

location. Thus, using the training database, LLOCUS learns a func-

tion (denoted by 𝑃 in Figure 2) that, based on the measured RSS and

locations of the online receivers, can predict the transmit power of

an unknown transmitter. We use a support vector machine based

regression method to learn this power estimation function.

For localizing simultaneous transmitters, we first estimate the

number of simultaneously active online transmitters based on the

measured RSS and locations of the online receivers. Then, we treat

each of the detected transmitters as non-simultaneous, by defining

an approximate region of presence around them, and localize each

of them based on the RSS measurements inside their approximate

region of presence. Thus, we can use 𝐿 and 𝑃 , learned based on non-

simultaneous training transmissions, for estimating the location

and power of the simultaneous online transmitters.

We evaluate LLOCUS using three experiments in different indoor

and outdoor environments. In our evaluations LLOCUS reduces the

localization error by 17-68% compared to a number of non-learning

methods, and estimates the power of an unknown transmitter with

an average error within 3 dB.

1Note that, in this paper, we use interpolation for two purposes. First, to obtain RSS
values at virtual receiver locations, and second, for learning-based localization.

LLOCUS: Learning-based Localization Using Crowdsourcing Mobihoc ’20, October 11–14, 2020, Boston, MA, USA

In summary, we make the following contributions:

• Develop a novel learning-based localization system, LLOCUS,

that can learn and localize in crowdsourced environments

with dynamic participants.

• Develop a novel learning-based method for estimating a

transmitter’s power using RSS measured by nearby receivers.

• Improve the state-of-art for localizing multiple transmitters

that are active simultaneously.

• Thoroughly evaluate LLOCUS in diverse environments, and

compare its performance with that of various other non-

learning methods.

• Implement a prototype of LLOCUS that is capable of near

real time operation.

2 RELATEDWORK

Learning based localization: Localization of a mobile node via

learning has been studied extensively in the context of WiFi finger-

printing, where the basic idea is to capture RSS fingerprints from

static access points (AP) for all the locations in an indoor area. Subse-

quently, the location of a mobile node, in the same area, is obtained

by searching for a match between the current RSS fingerprint and

the ones collected previously by deterministic/probabilistic meth-

ods [21, 26]. However, this method requires extensive manual effort

in collecting the training fingerprints. To circumvent this problem,

researchers have investigated ways to make the system work even

if the fingerprints are spatially sparse [16, 18]. They have also used

crowdsourcing for collecting the training fingerprints [3, 17]. Irre-

spective of the approach, all of these learning-based localization

methods ultimately depend on the RSS to/from the nearby “static”

APs. In our problem, both the transmitter and the receivers are

mobile; be it the training or the online phase. Thus, none of the

existing approaches can be adopted directly to solve our problem.

Crowdsourced localization:Crowdsourced RF sensing [1, 2, 8, 19,

25] uses specially equipped vehicles, networked spectrum analyzers,

and mobile devices as the crowdsourced nodes; where each of these

possesses an RF sensing capability. The idea explored in these works

is to crowdsource distributed RF sensing, and based on the sensing

data extract several important pieces of information, including

the location of the RF transmitters. However, none of these works

explore learning-based localization in a general setting, indoor or

outdoor, with unrestricted transmitter and receiver mobility.

3 METHODOLOGY OF LLOCUS

We first define our notation and then describe LLOCUS in detail.

Notation: During the data collection at time 𝑡 , a transmitter

located at (𝑥𝑇𝑡 , 𝑦
𝑇
𝑡) transmits on frequency 𝑓 𝑇𝑡 , with power 𝑝𝑇𝑡 . Note

we use𝑇 for variables related to the transmitter, and ᵀ for transpose.

At each time instant, the training transmitter reports 𝑡, 𝑝𝑇𝑡 , (𝑥
𝑇
𝑡 , 𝑦

𝑇
𝑡),

and each of the training receivers reports 𝑡, 𝑧𝑖,𝑡 , (𝑥𝑖,𝑡 , 𝑦𝑖,𝑡) to the

CC. Here, 𝑧𝑖,𝑡 (dBm) is the RSS measured by receiver 𝑖 at time 𝑡 ,
(𝑥𝑖,𝑡 , 𝑦𝑖,𝑡) ∈ 𝑅𝑡 is receiver 𝑖’s location, and 𝑅𝑡 is the set of locations
where participating receivers are present at time 𝑡 . The CC combines

the set of current reported data in an entry and appends it to the

training database. Using this training database, LLOCUS learns the

functions 𝐿 and 𝑃 (shown in Figure 2). During the online phase,

at time 𝑡 ′, each participating receiver 𝑖 reports to the CC: 𝑡 ′, 𝑧𝑖,𝑡 ′ ,

(𝑥𝑖,𝑡 ′, 𝑦𝑖,𝑡 ′) ∈ 𝑅𝑡 ′ . The CC feeds the online data to 𝑃 and𝐿 to estimate

the power 𝑝𝑇𝑡 ′ and location (𝑥𝑡 ′, 𝑦𝑡 ′) of the transmitter.

3.1 Both ends are mobile

The localization function 𝐿, shown in Figure 2, is the unknown

target function that we want to learn, based on the set of train-

ing measurements:
{
(𝑥𝑇𝑡 , 𝑦

𝑇
𝑡), 𝑅𝑡 , {𝑧𝑖,𝑡 };∀(𝑥𝑖 , 𝑦𝑖) ∈ 𝑅𝑡 }. Due to the

mobility of the crowdsourced nodes, the tuples (𝑧𝑖,𝑡 , (𝑥𝑖,𝑡 , 𝑦𝑖,𝑡)) cor-
respond to different receiver locations for different time instants.

Thus, we cannot simply use them as features for learning 𝐿. To
tackle this issue, we map the tuples, (𝑧𝑖,𝑡 , (𝑥𝑖,𝑡 , 𝑦𝑖,𝑡)), to a set of

features that are common across all the training as well as the on-

line entries. We make use of RSS interpolation to accomplish this

feature mapping, as described below. In this section and Section 3.2,

we assume that the training and the online transmitters have the

same power. We relax this assumption in Section 3.3 where we

present our solution for transmit power variability.

3.1.1 Interpolation at fixed virtual receiver locations (IFVR). In this

feature mapping approach, we predetermine a set of ‘fixed’ lo-

cations, 𝐼 , in the area of interest. For each of the entries in the

training database, we interpolate the measured RSS values, 𝑧𝑖,𝑡
at (𝑥𝑖,𝑡 , 𝑦𝑖,𝑡) ∈ 𝑅𝑡 , to the set of locations in 𝐼 , and obtain an in-

terpolated training database. This process is shown in Figure 2

as ‘interpolate training database’. We denote the interpolated RSS

value at (𝑥 𝑗,𝑡 , 𝑦 𝑗,𝑡) ∈ 𝐼 by 𝑧 𝑗,𝑡 . During the online phase at time

𝑡 ′, when a new set of RF sensing data arrives at the CC, we also

interpolate the reported RSS values, 𝑧𝑖,𝑡 ′ , measured by the current

online receivers at (𝑥𝑖,𝑡 ′, 𝑦𝑖,𝑡 ′) ∈ 𝑅𝑡 ′ to the locations in 𝐼 (shown
as ‘interpolate online entry’ in Figure 2). Now, we have a set of

features, the interpolated RSS values at the set of locations in 𝐼 , that
are common across all the training and online entries. We identify

|𝐼 | uniformly spaced locations in the area for determining 𝐼 .

3.1.2 RSS interpolation algorithms. We need an algorithm to in-

terpolate the RSS field at the set of locations in 𝐼 . We start our

investigation with two RSS interpolation methods, kriging interpo-

lation and inverse distance weighting, that are known to perform

well on the RSS field [6, 11].

Kriging interpolation: In this method, RSS is modeled as an intrin-

sically stationary random field, i.e., the mean and covariance func-

tions are spatially invariant. Kriging computes the interpolated RSS

at (𝑥 𝑗,𝑡 , 𝑦 𝑗,𝑡) ∈ 𝐼 as, 𝑧 𝑗,𝑡 =
∑
𝑖𝑤𝑖,𝑡𝑧𝑖,𝑡 , ∀(𝑥𝑖,𝑡 , 𝑦𝑖,𝑡) ∈ 𝑅𝑡 . The optimal

weights, {𝑤𝑖,𝑡 }, are obtained as described in [6]. For the RSS field to

be intrinsically stationary, it is required that E[𝑧𝑖,𝑡] − E[𝑧𝑖+ℎ,𝑡] = 0,

which is not the case for RSS, in general. To overcome this problem,

we use detrending, as given in [6].

Inverse distance weighting (IDW): In this method, we compute the

interpolated RSS at (𝑥 𝑗,𝑡 , 𝑦 𝑗,𝑡) as, 𝑧 𝑗,𝑡 =
∑

𝑖 𝑧𝑖,𝑡 /𝑑
𝑐
𝑖 𝑗∑

𝑖 1/𝑑
𝑐
𝑖 𝑗

, ∀(𝑥𝑖,𝑡 , 𝑦𝑖,𝑡) ∈ 𝑅𝑡 .

Here 𝑑𝑖 𝑗 is the distance between (𝑥𝑖,𝑡 , 𝑦𝑖,𝑡), (𝑥 𝑗,𝑡 , 𝑦 𝑗,𝑡) and 𝑐 is a

constant, obtained by k-fold cross validation [24]. The strategy is to

estimate the RSS as a weighted average of the measured RSS values.

The weighing is done such that the RSS values measured close to

the target location, (𝑥 𝑗,𝑡 , 𝑦 𝑗,𝑡), have higher weight compared to the

RSS values measured far away from (𝑥 𝑗,𝑡 , 𝑦 𝑗,𝑡).
For evaluating the above RSS interpolation methods, we inter-

polate the RSS field to the locations for which we have RSS values

Mobihoc ’20, October 11–14, 2020, Boston, MA, USA Sarkar et al.

Figure 3: Linear regression in TxAIDW

measured by physical receivers. During this evaluation, we observe

that sometimes the interpolated RSS deviates significantly from the

measured RSS. This happens primarily due to the randomness in

the RF environment. To address this issue, we take a more funda-

mental approach based on the following observation. In general, the

RSS interpolation methods perform the interpolation without the

knowledge of the transmitter’s location. Thus, the estimated RSS in

the above methods depends only on the observed RSS values, and

the locations of observations. However, in the context of LLOCUS,

the training database also has the transmitters’ actual locations. We

propose a new RSS interpolation method, transmitter assisted IDW

(TxAIDW), that exploits the availability of transmitters locations.

In TxAIDW, we use the training data for learning a function that

estimates a coarse value of RSS at the target location. Then, we

use the current RSS measurements at the receivers near the tar-

get location and further refine the coarse estimate, to counter the

randomness in the RF environment. We show via evaluations, in

Section 4, that TxAIDW has lower RSS estimation error, compared

to kriging and IDW. The details of TxAIDW are presented below.

TxAIDW : We exploit the availability of transmitter’s location,

(𝑥𝑇𝑡 , 𝑦
𝑇
𝑡), for producing the coarse estimate of RSS, 𝑧 𝑗,𝑡 , at (𝑥 𝑗,𝑡 , 𝑦 𝑗,𝑡).

For that, we model the measured RSS, 𝑧𝑖,𝑡 , as [23]:

𝑧𝑖,𝑡 = 𝑧0 − 10𝜂 log10 (𝑑𝑖𝑇) (1)

where 𝑧0 is the measured RSS at a location close to the transmitter, 𝜂
is the radiowave path loss exponent, and𝑑𝑖𝑇 is the distance between

(𝑥𝑖,𝑡 , 𝑦𝑖,𝑡), (𝑥
𝑇
𝑡 , 𝑦

𝑇
𝑡). Next, we use the least square regression [24] to

learn the linear curve, defined by (1), that has best fit with all the RSS

measurements in the training database, as shown in Figure 3. The

learned linear curve is defined by its slope,𝜂, and intercept, 𝑧0. Then,
𝑧 𝑗,𝑡 is obtained by using the learned curve, and 𝑑 𝑗𝑇 , the distance

between (𝑥𝑇𝑡 , 𝑦
𝑇
𝑡) and (𝑥 𝑗,𝑡 , 𝑦 𝑗,𝑡); i.e., 𝑧 𝑗,𝑡 = 𝑧0 − 10𝜂 log10 (𝑑 𝑗𝑇).

Since the RSS values often deviate from (1), as shown in Figure 3,

we refine 𝑧 𝑗,𝑡 by estimating the randomness in the RF environment,

at (𝑥 𝑗,𝑡 , 𝑦 𝑗,𝑡). For that, we identify the deviation from (1) in the

current measured RSS values close to the target location (within

𝑑𝑟𝑒 𝑓 meters from (𝑥 𝑗,𝑡 , 𝑦 𝑗,𝑡)), and use the IDW method on these

deviation values to estimate the deviation at (𝑥 𝑗,𝑡 , 𝑦 𝑗,𝑡). Thus, the
final estimated RSS at (𝑥 𝑗,𝑡 , 𝑦 𝑗,𝑡) is:

𝑧 𝑗,𝑡 = 𝑧 𝑗,𝑡 +

∑
𝑖 (𝑧𝑖,𝑡 − 𝑧𝑖,𝑡)/𝑑

𝑐
𝑖 𝑗∑

𝑖 1/𝑑
𝑐
𝑖 𝑗

∀(𝑥𝑖,𝑡 , 𝑦𝑖,𝑡) ∈ 𝑅𝑡 𝑠 .𝑡 . 𝑑𝑖 𝑗 < 𝑑𝑟𝑒 𝑓

where 𝑧𝑖,𝑡 is the coarse estimate of RSS at (𝑥𝑖,𝑡 , 𝑦𝑖,𝑡). The intuition
behind our refinement strategy is that, the randomness in the RF en-

vironment close to (𝑥 𝑗,𝑡 , 𝑦 𝑗,𝑡) would possibly indicate the deviation

in RSS at (𝑥 𝑗,𝑡 , 𝑦 𝑗,𝑡), from (1).

Using TxAIDW, we can interpolate the RSS values in the training

entries to the set of location in 𝐼 . In IFVR we also interpolate the RSS

values in online entry to the location in 𝐼 . However, for the online

Figure 4: Differences in IFVR (left) and IVVR (right)

entry we do not have the transmitter’s location. Thus, without

the transmitter’s location we have to use less efficient methods,

kriging or IDW, for interpolating the online entry. To overcome this

limitation of IFVR, we propose another method for feature mapping

below, that does not require RSS interpolation for the online entry.

3.1.3 Interpolation at variable virtual receiver locations (IVVR). We

first divide the area of interest into a rectangular grid. Let the set

of voxel centers of the resulting voxels be 𝑉 . For each entry in

the training database, we interpolate the RSS values measured by

the training receivers to the set of locations in 𝑉 , resulting in an

interpolated training database, similar to the one obtained for IFVR,

except 𝑉 need not be same as 𝐼 . In the online phase, when a set

of RF sensing readings arrive at the CC, we extract a trimmed

training database from the interpolated training database (shown

as ‘trim training database’ in Figure. 2). The entries in the trimmed

training database consist of interpolated RSS values for the voxel

centers corresponding to the voxels inside which the current online

receivers are located. We choose a small value of the voxel length so

that the virtual receiver locations in the trimmed training database

are same as the receiver locations in the online entry. For every

new online entry, we use a different trimmed training database

depending on the online receivers’ locations. As the locations of

the virtual receivers vary across predictions, we call this approach

interpolation at variable virtual receiver locations.

3.1.4 IVFR vs. IVVR. Figure 4 shows the differences between IFVR

and IVVR using a simple example, with two training entries, 𝑡 = 1, 2,
and one online entry, 𝑡 ′ = 𝜃 . Once the feature mapping is done, the

next task is to learn the localization function, 𝐿 (shown in Fig. 2),

that will predict the locations of online transmitters. If IFVR is

used, LLOCUS learns the function 𝐿, only once, during the training

phase. In the online phase, we interpolate the reported RSS values to

the locations in 𝐼 , feed the interpolated RSS values to 𝐿, and get an

estimate of the transmitter’s location. On the other hand, with IVVR,

LLOCUS re-learns the function 𝐿 for every prediction in the online

phase, as shown in Figure 2, 4. In Figure 4, 𝐿𝜃 represents the learned

function at 𝑡 ′ = 𝜃 . The methods for learning 𝐿 are presented in the

next section. Due to the differences in the two feature mapping

methods, they have different prediction time, 𝑡𝑝 , defined as the time

required to make a prediction once a set of sensed data arrives at the

CC. With IVVR, LLOCUS learns repeatedly to reduce dependence

LLOCUS: Learning-based Localization Using Crowdsourcing Mobihoc ’20, October 11–14, 2020, Boston, MA, USA

on RSS interpolation (no RSS interpolation for online entries), and,

in turn, achieves lower localization error at the cost of higher 𝑡𝑝 .

3.2 Sparsity of training

In this section, we investigate learning algorithms that can ad-

dress the sparsity of training problem described in Section 1. We

present two algorithms for learning the localization function, 𝐿,
and describe how the learned function is used for making pre-

dictions. By virtue of the feature mapping methods described in

Section 3.1, the same set of features, interpolated RSS at the virtual

receiver locations are presented to the localization algorithms; for

both learning and prediction. For the ease of explaining, we as-

sume that the set of the features, used by the learning algorithm, is

{𝑧 𝑗,𝑡 };∀(𝑥 𝑗,𝑡 , 𝑦 𝑗,𝑡) ∈ 𝐴𝑡 ′ . In reality, 𝐴𝑡 ′ = 𝐼 and 𝐴𝑡 ′ = 𝑅𝑡 ′ for IFVR
and IVVR, respectively. We use z𝑡 ′ for the vector of RSS values at

𝑡 ′, [𝑧1,𝑡 ′, 𝑧2,𝑡 ′, ...], and𝑀 is the set of time instants corresponding

to the entries in the training database. When LLOCUS is used with

IVVR, the learning of 𝐿 happens repeatedly for every prediction,

as described in Section 3.1.4. To ensure near real-time continuous

operation of LLOCUS, we must have an algorithm that learns fast.

Consequently, we cannot use iterative algorithms whose learning

(convergence) time is non-deterministic. Next, we describe two

algorithms that maintain the above criteria.

kNN localization (kNN): The kNN algorithm has the property that

with enough training examples, the error of this method converges

to that of the best possible predictor [24]. This property implies that

when the training examples are spatially dense, this method will

perform well. Moreover, the kNN method requires minimal time for

learning, making it suitable for IVVR. To predict the transmitter’s

location, we determine 𝑘 RSS vectors in the set {z𝑡 };∀𝑡 ∈ 𝑀 that

are nearest to z𝑡 ′ in the feature space. Then, we use the weighted

average of the labels/targets, i.e., (𝑥𝑇𝑡 , 𝑦
𝑇
𝑡), corresponding to the

chosen 𝑘 RSS vectors, as the predicted location of the transmitter.

Regularized Radial basis interpolation (RRBI): The kNN localiza-

tion is efficient for a high spatial density of training examples;

however, in reality the training examples are often sparse. Address-

ing this sparsity of training examples is an important objective of

LLOCUS. Interpolation via radial basis function method [4] has

been considered for WiFi based indoor localization in [18]; where

the training fingerprints are sparse, collected at room level granu-

larity. Moreover, the learning algorithm in this method uses matrix

operations that can be performed in a non-iterative fashion. Since

this framework fits into our sparsity of training problem, we con-

sider this as a candidate solution. Henceforth, we call this method

localization via radial basis interpolation (RBI). Although the RBI

method has the word ‘interpolation’ in its name, it is different from

the RSS interpolation algorithms of Section 3.1.2. The RSS inter-

polation methods produce RSS as an output, but the RBI method

produces a physical coordinate (two dimensional) as output.

While evaluating the RBI method, we observe that it performs

no better than the kNN method. We further investigate this issue

and identify that there are two contextual differences betweenWiFi

fingerprinting for indoor localization, for which the RBI method

has been developed, and our generalized framework in LLOCUS.

First, in case of WiFi fingerprinting the training fingerprints are

based on RSS measurements to/from static physical APs; whereas,

in LLOCUS the training fingerprints are based on the estimated

RSS values, via RSS interpolation, at the virtual receiver locations.

Since the RSS interpolation methods are not perfect, the training

fingerprints will always have some noise due to estimation error.

This issue may lead to 𝐿 learning a strong dependence on a few

particular features that have a significant amount of noise in the

estimated RSS. The second difference is that the RBI method has

been developed for indoor environments. However, LLOCUS is not

limited to any specific RF environment. Consequently, the Gaussian

kernel used in RBI may not be the best kernel in all RF environments.

To make the RBI method usable in the context of LLOCUS, we

propose a regularized, and more generalized version of the RBI

method, which we call regularized RBI (RRBI). In RRBI, we use least

square regularization [24] to generalize the learning of 𝐿. The least
square regularization prevents the learning algorithm from learning

strong dependence on a few features, i.e., it reduces the influence of

individual features. In RRBI we also consider three kernel functions,

Gaussian, inverse quadratic, and inverse multiquadric, that are

relevant in this framework [4], and identify the best one, with

respect to the RF environment, using cross validation.

In the RRBI method, we estimate the transmitter’s location as:

(𝑥𝑡 ′, 𝑦𝑡 ′) =

(
𝑐𝑥 +

∑
𝑘∈𝑀

𝛼𝑘𝐾
(
| |z𝑡 ′ − z𝑘 | |

)
, 𝑐𝑦 +

∑
𝑘∈𝑀

𝛽𝑘𝐾
(
| |z𝑡 ′ − z𝑘 | |

))

where {z𝑘 } is the feature vector (interpolated RSS at the virtual

receivers locations) corresponding to the 𝑘𝑡ℎ entry in the train-

ing database. {𝛼𝑘 }, {𝛽𝑘 } are the set of weights of this learning

algorithm, 𝐾 (·) is the kernel function, and 𝑐𝑥 , 𝑐𝑦 are the mean of

{𝑥𝑇𝑡 }, {𝑦
𝑇
𝑡 };∀𝑡 ∈ 𝑀 , respectively. Essentially, the RRBI method esti-

mates the transmitter’s location by computing the weighted average

of the distances between the features in the online entry and the

features in the training entries in a high dimensional space. The

kernel function, 𝐾 (·), specifies the similarity between z𝑡 ′ and z𝑘
in a higher dimensional feature space [24], compared to the input

space. This feature transformation makes the input space more

expressive; often it makes a linearly non-separable input space to

be linearly separable in the higher dimensional feature space. This,

in turn, simplifies the learning problem.

To determine the weights, {𝛼𝑘 }, we estimate the transmitter’s

location for all the entries in 𝑀 , using the above equation, and

minimize the squared error:

min
𝛼𝛼𝛼

∑
𝑡 ∈𝑀

(
𝑥𝑇𝑡 − 𝑐𝑥 −

∑
𝑘

𝛼𝑘𝐾
(
| |z𝑡 − z𝑘 | |

))2
+

𝜆

2|𝑀 |
| |𝛼𝛼𝛼 | |2 (2)

where 𝛼𝛼𝛼 is the vector of {𝛼𝑘 };∀𝑘 ∈ 𝑀 . The second part of the

cost function of (2) is due to the least square regularization. 𝜆 is a

hyper-parameter that can be obtained by cross validations. Taking

partial derivative of the objective in (2) with respect to 𝛼𝛼𝛼 produces

a set of linear equations that can be arranged in matrix form as,(
K
ᵀ
K + (𝜆/|𝑀 |)I

)
𝛼𝛼𝛼 = K

ᵀ
x
𝑇 (3)

where K[𝑡, 𝑘] = 𝐾
(
| |z𝑡 − z𝑘 | |

)
, I is the identity matrix, and x

𝑇 is

the vector of {𝑥𝑇𝑡 − 𝑐𝑥 };∀𝑡 ∈ 𝑀 . Solving (3) produces the optimal

weights for 𝛼𝛼𝛼 . A similar method is used for determining {𝛽𝑘 }; that
we omit for brevity. In Section 4, we show that RRBI performs better

than kNN and RBI, in presence of the sparsity of training problem.

Mobihoc ’20, October 11–14, 2020, Boston, MA, USA Sarkar et al.

3.3 Transmit power variability

In Section 3.1 and 3.2, we assumed the online transmitters’ power,

𝑝𝑇𝑡 ′ , to be same as the training transmitters’ power, 𝑝𝑇𝑡 . Thus, the lo-
calization algorithms described in Section 3.2 would work properly

if 𝑝𝑇𝑡 ′ = 𝑝𝑇𝑡 . To make the localization algorithms work with online

transmitters of unknown power, LLOCUS first estimates the power

of the online transmitter (‘Estimate TX power’ in Figure 2) and then

scales the reported RSS values (‘Scale RSS’ in Figure 2) such that it

appears to the localization algorithm that 𝑝𝑇𝑡 ′ = 𝑝𝑇𝑡 . Thus, we must

have a way to estimate the online transmitter’s power.

A PLM can be used to estimate the power of a transmitter, once

its location has been estimated, as follows:

𝑝𝑇𝑡 ′ = 𝑝 +
1

|𝑅𝑡 ′ |

∑
𝑖

(
𝑧𝑖,𝑡 ′ − (𝑧0 − 10𝜂 log𝑑𝑖𝑇)

)
;∀(𝑥𝑖,𝑡 ′, 𝑦𝑖,𝑡 ′) ∈ 𝑅𝑡 ′

where 𝑑𝑖𝑇 is the distance between the estimated location of the

transmitter and the receiver at (𝑥𝑖,𝑡 ′, 𝑦𝑖,𝑡 ′). We start with the default

transmit power, 𝑝 , and add the average difference between the RSS

measured by the online receivers, and what the PLM would expect

the RSS to be at those receiver locations, for a transmitter at the

estimated transmitter location, with power 𝑝 . We call this method,

transmitter power estimation using PLM (TPE-PLM). However, in

LLOCUS, we must estimate the online transmitter’s power, using

the measured RSS and locations of the online receivers, before its

location has been estimated (see Figure 2).

One method for estimating the online transmitter’s power, that

we call MAX-RSS, is to identify the maximum measured RSS and

declare the same as the transmitter’s power. Intuitively, this method

may not work well when the density of the crowdsourcing nodes

is low. In such cases, the maximum RSS might be measured at a

significant distance from the transmitter’s location. Thus, the trans-

mitter’s power can be much higher than the measured maximum

RSS. We show via evaluations, in Section 4, that our intuition is

correct. Instead of using just the maximum RSS, we can use all

the RSS measurements to produce a more accurate estimate of the

transmitter’s power. EZ [12], uses a genetic algorithm (GA) for

estimating location, transmit power, and path loss exponent of the

PLM, of an unknown transmitter. However, we determine that the

GA, being an iterative method, requires ≈ 3 minutes (on a server-

class machine) for estimating the transmitter’s location and power.

Thus, EZ is not applicable for real time operations, when the online

transmitters’ location and power can change with time.

In absence of an accurate method for estimating the transmitter’s

power, based on location and RSS measurements of the online

receivers, we propose a new method that can achieve high accuracy

and low time complexity by learning from the training data. To learn

a function that estimates the power of an unknown transmitter, we

must have the training database with different values of transmit

power. To simplify the data collection, we conduct the training with

constant transmit power, 𝑝𝑇𝑡 = 𝑝 , and then scale the RSS values

in the training database to emulate transmit power diversity. For

example, we canmake the power of the transmitter at time 𝑡 to be 𝑝1
by scaling the measured RSS values as (𝑧𝑖,𝑡 −𝑝+𝑝1). We refer to this

idea of scaling the RSS values to emulate a different transmit power

as RSS scaling. This RSS scaling is justified because if the power of

a transmitter changes by 𝛿 dB, the measured RSS at all the receivers

would also change by 𝛿 dB, when the RF environment is unchanged

[5]. Using the scaled RSS values, LLOCUS learns a function, 𝑃 ,
that can estimate the online transmitter’s power, 𝑝𝑇𝑡 ′ . We frame

the problem of learning 𝑃 as a regression problem. For identifying

features, to be used in 𝑃 , we note that 𝑃 must produce 𝑝𝑇𝑡 ′ using the
measured RSS and locations of the online receivers. Based on this

observation, we use the following method for feature extraction.

We analyze the average RSS measured by the receivers close to the

transmitter. For any transmission, we identify the location of the

receiver that measures maximum RSS and consider a circle of radius

𝑅𝑝 around it. All the receivers within this circle are considered

‘close’ to the transmitter. For each training entry, we calculate the

average of RSS measured by the receivers close to the transmitter.

This local average RSS, denoted by 𝜇𝑡 , carries information about the

difference between 𝑝𝑇𝑡 ′ and 𝑝 . We use this one dimensional feature

vector in a support vector machine [24] regressor, with the radial

basis kernel, for learning 𝑃 .
During the online phase, at time 𝑡 ′, when a new entry is received

by the CC, we compute 𝜇𝑡 ′ and feed it to 𝑃 for estimating 𝑝𝑇𝑡 ′ . Then,

using 𝑝𝑇𝑡 ′ , we apply RSS scaling on the measured RSS values, {𝑧𝑖,𝑡 ′ },
such that the power of the online transmitter is 𝑝 . Finally, we feed
the scaled online entry to 𝐿 for predicting the transmitter’s loca-

tion, as shown in Figure 2. In Section 4, our evaluations show that

our method has lower power estimation error than other methods

described earlier in this section.

Limitation: Transmit power estimation in LLOCUS exploits the

underlying assumption that in a crowdsourcing scenario a trans-

mitter will always have a sufficient number of receivers close to

it irrespective of the transmitter’s location. Thus, if the receivers

are unevenly distributed, the above method may not lead to a very

accurate estimate of the power of an unknown transmitter.

3.4 Localizing simultaneous transmitters

Until now, we have considered localizing non-simultaneous trans-

mitters, i.e., multiple transmitters can be present in the area, but

their transmissions do not overlap in time. However, under certain

undesirable situations multiple transmitters can be active simultane-

ously, e.g., an RF jammer may transmit alongside a legitimate trans-

mitter for the purpose of disrupting communications. Therefore, in

LLOCUS, we incorporate the capability of locating simultaneously

active transmitters (SATs), as shown in Figure 5. LLOCUS first esti-

mates the number of SATs, and then performs location estimation

for each of the identified transmitters. The primary challenge in lo-

calizing SATs is that the measured RSS values at the crowdsourcing

receivers are non-deterministic summation of the power from the

individual transmitters. To address this challenge, LLOCUS treats

each of the detected transmitters as non-simultaneous by defining

an approximate region of presence around each of them. The ap-

proximate region of presence around a transmitter is defined as the

region where the RSS measured by each of the sensing nodes is

primarily dominated by the power of the transmitter located inside

that region of presence. This implies that the approximate region of

presence of the SATs must be non-overlapping such that the sensing

nodes can be segregated in disjoint subsets, where nodes within a

single subset are influenced by only one transmitter. Thus, in our

approach we avoid interference at the sensing nodes by appropri-

ately selecting the non-overlapping regions of presence, which is

LLOCUS: Learning-based Localization Using Crowdsourcing Mobihoc ’20, October 11–14, 2020, Boston, MA, USA

Sensing
data

Estimate
of SATs

Estimate power & location of detected SAT1
(using methods described in Sections 3.1 – 3.3)

Same as above for SAT2
Same as above for SATn

n SATs
detected

Figure 5: Workflow of LLOCUS for localizing SATs

an important contribution of our work. Once the non-overlapping

regions of presence around the SATs are identified, the receivers

inside these regions use the methods described in Sections 3.1 - 3.3

for estimating the location and power of the transmitters associated

with each of the regions of presence.

For a robust estimation of the number of SATs, we build upon

strategies used in SPLOT [19]. For the purpose of explaining our

enhancement, we first briefly describe SPLOT. SPLOT first identifies

the locations, 𝜽 𝑡 , where the measured RSS is above a pre-defined

threshold, say 𝑧𝑟𝑒 𝑓 dBm (minimum RSS measured by a receiver

when there is a transmitter, with transmit power 𝑝 dBm, in prox-

imity). Next, it identifies a neighborhood for each of the locations

𝜃𝑎 ∈ 𝜽 𝑡 , defined as a circle of radius 𝑅 with 𝜃𝑎 at the center. If two

locations in 𝜽 𝑡 are within each other’s neighborhood, then the loca-

tion with lower measured RSS is removed from 𝜽 𝑡 . The cardinality
of 𝜽 𝑡 after this screening procedure is declared as the number of

SATs at time 𝑡 . The neighborhood of each of the locations in the

remaining 𝜽 𝑡 is considered to be the approximate region of pres-

ence of the nearest active transmitter. Subsequently, for each of the

remaining locations in 𝜽 𝑡 , SPLOT uses the RSS measurements in

its neighborhood to localize the transmitter in proximity, using the

matrix inversion method[19]. A reasonable value of 𝑅 depends on

the density of the crowdsourcing nodes and the expected minimum

separation between any pair of SATs.

Our improvement over SPLOT is in adaptively selecting the

neighborhood for the locations in 𝜽 𝑡 . Using a fixed value for 𝑅
may lead to many false positives (transmitters) in certain scenarios.

E.g., when there is only one active online transmitter operating

at a power level higher that 𝑝 , i.e., 𝑝𝑇𝑡 ′ > 𝑝 , using fixed values of

𝑅 and 𝑧𝑟𝑒 𝑓 might result in |𝜽 𝑡 | > 1 after the screening procedure,

leading to incorrectly declaring more than one SAT. To overcome

this limitation, while screening the initial set of locations in 𝜽 𝑡 , for
each 𝜃𝑎 ∈ 𝜽 𝑡 , we estimate the power of the transmitter nearest to

𝜃𝑎 , and based on the estimated transmit power, we choose a value

of 𝑅𝜃𝑎 (adaptive value of 𝑅) that defines the neighborhood of 𝜃𝑎 .
Thus, the screening of 𝜽 𝑡 in LLOCUS is defined by the following

procedure. First, we sort the locations in 𝜽 𝑡 based on the descending
order of the RSS values measured at these locations. Let the sorted

set of locations be �𝜽 𝑡 . Then, we sequentially process the locations in
�𝜽 𝑡 starting from the beginning. Assuming that the current location

being processed is 𝜃𝑎 ∈ �𝜽 𝑡 , for identifying the neighborhood of 𝜃𝑎 ,
we apply 𝑃 (see Section 3.3) at 𝜃𝑎 and estimate the power of the

transmitter in proximity. Recall from Section 3.3 that input to 𝑃 is

the local average RSS. Here, we use 𝜃𝑎 as the center for calculating

the local average RSS. Since 𝑃 only uses measured RSS close to 𝜃𝑎 ,
the estimated power is that of the transmitter in proximity of 𝜃𝑎 .
If the estimated transmit power, 𝑝𝑇𝑡,𝑎 , is more than 𝑝 , then choose

𝑅𝜃𝑎 to be 𝑅 × 10
(
𝑝−𝑝𝑇𝑡,𝑎

)
/10𝜂 . Here 𝑅𝜃𝑎 is selected such that if a

transmitter transmits at power 𝑝𝑇𝑡,𝑎 dBm, the RSS value measured

by a receiver at a distance of𝑅𝜃𝑎 meters is approximately 𝑧𝑟𝑒 𝑓 . Thus,

if 𝑝𝑇𝑡 > 𝑝 , we use a bigger radius and reduce the number of false

positives. Next, among all the remaining locations in �𝜽 𝑡 , that have
not been processed yet, ones that are in the neighborhood of 𝜃𝑎 are

removed. Hence, our method for estimating the power of online

transmitters, described in Section 3.3, enables the adaptive selection

of neighborhood in LLOCUS. This completes the processing of 𝜃𝑎 .
In the next iteration, we repeat the same procedure for the next

element in the remaining �𝜽 𝑡 . For estimating 𝑝𝑇𝑡,𝑎 , we use 𝑃 instead

of MAX-RSS, EZ, or TPE-PLM, for reasons explained in Section 3.3.

Limitation: LLOCUS can not detect two SATs if they are very

close to each other. When that happens, it is not possible to seg-

regate the set of receivers in disjoint subsets where each subset if

primarily affected by only one transmitter.

3.5 Time complexity of predictions

Recall from Section 3.1.4, 𝑡𝑝 is the time required to make a predic-

tion, once an online entry arrives at the CC. Assuming |𝑀 | > |𝑅𝑡 ′ |,
|𝑀 | > |𝐼 |, we summarize the main results but leave out the details

for brevity. For IFVR, 𝑡𝑝 is O
(
|𝑀 |× |𝐼 |

)
, and for IVVR, 𝑡𝑝 is O(|𝑀 |3).

4 EVALUATION AND RESULTS

In the section, we first evaluate LLOCUS for transmitters whose

transmissions do not overlap in time. We evaluate LLOCUS for

simultaneously active transmitters (SATs) in Section 4.2.

4.1 LLOCUS for single transmitter localization

We evaluate LLOCUS using three different datasets, collected in

three experimental settings that span indoor and outdoor environ-

ments, with varying areas and density of crowdsourcing nodes.

Description of our experimental settings and datasets:

Dataset A: Outdoor park area: For collecting this dataset, we conduct

a measurement experiment in an 85 m × 65 m outdoor area. We use

two volunteers for this experiment, one of them as a transmitter

(walkie-talkie with transmitter power of 1W) and the other as a

receiver (an RTL-SDR attached to a mobile device). To create a

crowdsourced environment, the transmitter transmits continuously

from one location, and the receiver roams around randomly, inside

the park, for 3 minutes. An android application running on the

mobile receiver records one reading, tuple of RSS and location (GPS

coordinates), per second. This essentially creates a scenario, where

a transmission is heard by up to 180 (one reading/second for 3

minutes) crowdsourcing nodes. This procedure is repeated for 44

different randomly chosen transmitter locations.

Dataset B: Indoor hallways: We consider an indoor area of four

connected hallways for this dataset. While the whole area is 2500

m2, all the nodes move only in the four hallways. This dataset is

collected by creating an actual crowdsourcing environment with

multiple users and using the same equipment as in dataset A. The

transmitter moves around the four hallways in a cyclic pattern, and

eight receivers move randomly in the four hallways.

Dataset C: Outdoor uneven area: For this experiment, we use

another outdoor area of 35 m × 75 m. Similar to dataset B, this

dataset is also created by conducting a crowdsourcing experiment

with the same equipment. Here, we use static transmitters but

mobile receivers. Three users acting as transmitters are placed in

the area with at least 25 m distance between any pair, and the

Mobihoc ’20, October 11–14, 2020, Boston, MA, USA Sarkar et al.

(a) Comparison of RSS interpolation methods (b) Improvement in RRBI over RBI (c) Comparison between RRBI and kNN

Figure 6: Evaluations of the constituent methods in LLOCUS using dataset A. For all the plots 𝑁 = 20 and |𝐼 | = 16 for IFVR.

transmitters transmit in a round-robin fashion. Eight users acting

as receivers roam inside the area randomly.

Creating train-test sets: Among all the transmitter locations

in the available data, we randomly select tx𝑋 locations as training

transmitter locations. For each training transmitter location, rx𝑋
randomly selected locations among the available receiver locations,

are used as training receiver locations. For the test set, we randomly

select another set of tx𝑌 transmitter locations as online transmitter

locations, and for each online transmitter location, we randomly

select rx𝑌 receiver locations as online receiver locations.

Evaluation criteria: (i) 𝑒𝑙 : Mean of the euclidean distances be-

tween the actual locations and the estimated locations of the tx𝑌
online transmitters. (ii) 𝑒𝑝 : Mean of the absolute differences be-

tween the actual power and the estimated power of the tx𝑌 online

transmitters. We vary the power of online transmitters randomly

between (−10, 10) dB from the power of training transmitters. (iii)

𝑒𝑟 , 𝜎𝑒𝑟 : Mean and standard deviation of the absolute differences

between the actual RSS and the estimated RSS at 𝐾 target locations

where the RSS field is interpolated. Each of the values in 𝑒𝑙 , 𝑒𝑝 , and
𝑒𝑟 are further averaged over 𝑁 iterations, where each iteration cor-

responds to different partition of the available data in train and test

datasets. Each partition produces a random 70% - 30% split of the

available data in train and test datasets. The purpose of averaging

over 𝑁 iterations is to smooth out any performance outlier due to

a bad train-test split of the available data.

Existingmethods for comparison:We compare LLOCUSwith

the following three well-known non-learning methods.

Maximum likelihood estimation (MLE) [20]: A non-learning method

that uses the maximum likelihood estimation to estimate the trans-

mitter’s location, based on the PLM and the reported RSS values.

Echolocation (EL) [13]: A non-learning method that creates an or-

dered sequence of RSS values. Then for every location in the area

of interest, it creates an ordered sequence of the distances to the

receivers. Finally, it estimates the location of the transmitter as the

one that has maximum match between the ordered sequence of

RSS and that location’s ordered sequence of distances.

Matrix Inversion (MI) [19]: Discretizes the area of interest in voxels,

estimates the transmit power field of each voxel based on the PLM

and the reported data, and declares the voxel center with maximum

transmit power field as the location of the transmitter.

4.1.1 Results. We present the evaluation results in this section.

Selecting constituent methods for LLOCUS: In Figure 6, we

evaluate the methods for RSS interpolation and localization pre-

sented in Section 3 using dataset A. Figure 6(a) compares the RSS

interpolation methods in terms of 𝑒𝑟 , 𝜎𝑒𝑟 . In Figure 6(a), tx𝑋 ∈

𝑈 (20, 30), rx𝑋 ∈ 𝑈 (10, 30), and rx𝑌 = 5. We use the notation

𝑎 ∈ 𝑈 (𝑏, 𝑐) to denote 𝑎 is randomly chosen between (𝑏, 𝑐). We

observe from this figure, both 𝑒𝑟 and 𝜎𝑒𝑟 for TxAIDW is 2 dB lower

than that of kriging and IDW interpolation. This justifies using

TxAIDW for RSS interpolation in LLOCUS.

Figure 6(b) shows that 𝑒𝑙 of our proposed RRBI method is better

than the RBI method by around 3 meters, for both IFVR and IVVR.

For producing Figure 6(b), we use tx𝑋 = 30, rx𝑋 ∈ 𝑈 (15, 30), and
rx𝑌 ∈ (15, 20). Figure 6(c) compares 𝑒𝑙 for the kNN method and

the RRBI method, as tx𝑋 is varied. In this figure, rx𝑋 ∈ 𝑈 (15, 30),
and rx𝑌 ∈ 𝑈 (15, 20). We observe that, in presence of the sparsity of

training problem, i.e., when tx𝑋 is low, RRBI outperforms kNN. As

tx𝑋 is increased, the performance of kNN gradually converges with

that of RRBI. The above observation is true for both featuremapping

methods. This implies in areas with a low density of crowdsourcing

nodes, RRBI is better than kNN, and in areas with a high density

of crowdsourcing nodes, RRBI is as good as kNN, if not better.

Thus, based on the observations from Figure 6(b), (c), we select

RRBI as the localization method in LLOCUS. All the subsequent

evaluations for LLOCUS use TxAIDW for RSS interpolation and

RRBI for localization.

LLOCUS vs non-learning methods: In Figure 7, we evaluate

𝑒𝑙 for LLOCUS and the non-learning methods using our datasets, as

tx𝑋 is varied. In Figure 7(a), rx𝑋 ∈ 𝑈 (15, 30) and rx𝑌 ∈ 𝑈 (15, 20).
Since Figure 7(b), (c) corresponds to actual crowdsourcing setup,

readings from all the available receivers are used, i.e., rx𝑋 = 8,

rx𝑌 = 8. We make the following observations from this figure.

First, LLOCUS always outperforms the non-learning methods,

irrespective of the feature mapping method used. Moreover, increas-

ing tx𝑋 reduces 𝑒𝑙 for LLOCUS due to a higher density of training

examples. However, tx𝑋 has no effect on the non-learning methods,

since they do not use the training data. Using the right-most data

points in Figure 7, the improvement in LLOCUS (with IVVR) over

the non-learning methods, in terms of 𝑒𝑙 , for the three datasets are
at least 17%, 68%, and 24%, respectively.

Second, the improvement in LLOCUS, over the non-learning

methods, is much more prominent in dataset B. This is primarily

due to the fact that, the transmitters in dataset B are always in

the hallways. Thus, although the total area in dataset B is 2500

m2, the spatial sparsity of the training transmitters is much lesser,

compared to the other two datasets.

Third, LLOCUS is almost always better with IVVR, than IFVR. For

IFVR, we try different values of |𝐼 | and identify that, using a value

of |𝐼 | in the range 16 - 25 provides best performance. In general, the

value of |𝐼 | can be obtained by applying cross validation.

LLOCUS: Learning-based Localization Using Crowdsourcing Mobihoc ’20, October 11–14, 2020, Boston, MA, USA

(a) Dataset A (b) Dataset B (c) Dataset C

Figure 7: Localization error of LLOCUS using dataset A, B, and C. For all the plots 𝑁 = 20 and |𝐼 | = 16 for IFVR.

(a) Dataset A (b) Dataset A (c) Transmit power estimation error

Figure 8: Miscellaneous evaluations of LLOCUS. For all three plots 𝑁 = 20.

Finally, among the non-learning methods the MLE algorithm per-

forms better than the others, in general. Thus, we use the location

estimate produced by MLE to estimate the power of the transmitter

when we compare 𝑒𝑝 for LLOCUS and TPE-PLM, later in Figure 8.

Effect of receiver density: While Figure 7 shows the impact of

tx𝑋 on 𝑒𝑙 , the localization error also depends on rx𝑌 , as shown in

Figure 8(a). In Figure 8(a), we use tx𝑋 = 30, and rx𝑋 ∈ 𝑈 (10, 30).
We observe that increasing rx𝑌 reduces 𝑒𝑙 for both LLOCUS and

the non-learning methods. This is due to the fact that more online

receivers provide more RF information about the transmitter’s lo-

cation. However, the rate of improvement in LLOCUS is faster than

the non-learning methods, as rx𝑌 increases.

Estimation of transmit power: Using tx𝑋 = 30 and rx𝑋 ∈

𝑈 (10, 30), Figure 8(b) shows that the density of the crowdsourcing

nodes also affect the estimation of transmit power. We observe

that, increasing rx𝑌 reduces 𝑒𝑝 for both LLOCUS and MAX-RSS

(described in Section 3.3). However, when rx𝑌 is low, the MAX-RSS

method has a high error. Since the density of the crowdsourcing

nodes is not controllable, based on the observations from Figure 8(b),

we do not use the MAX-RSS method in LLOCUS.

Figure 8(b) also shows the improvement in LLOCUS, over TPE-

PLM (described in Section 3.3), in terms of 𝑒𝑝 . In Figure 8(c), we

show that, this improvement exists for all the datasets. In Figure 8(c),

we use tx𝑋 = 30, 60, and 35 for dataset A, B, and C, respectively.

Values of rx𝑋 and rx𝑌 are chosen as in Figure 7. We observe that

𝑒𝑝 for LLOCUS is less than 3 dB across all three datasets. Moreover,

𝑒𝑝 for LLOCUS is 2-3 dB lesser than the 𝑒𝑝 based on the PLM.

Table 1: Prediction time (msecs) for different algorithms

Dataset EZ EL MLE LOCUS-IVVR LLOCUS-IFVR

A 5.5 × 105 61.8 30.0 38.1 0.1
B 6.9 × 105 2.1 3.5 167.1 0.2
C 5.75 × 105 4.5 8.6 58.8 0.1

Figure 8(b), (c) collectively justifies using our method, proposed in

Section 3.3, for estimating the power of online transmitters.

Prediction time: In Table 1, we present the prediction time, 𝑡𝑝 ,
for different methods. We observe that 𝑡𝑝 for LLOCUS is signifi-

cantly lower when IFVR is used, compared to the case when IVVR

is used. This observation is in congruence with our time complexity

analysis in Section 3.5. Next, we observe that, 𝑡𝑝 for LLOCUS with

IVVR can be much higher compared to the 𝑡𝑝 for EL and MLE;

whereas with IFVR 𝑡𝑝 for LLOCUS is much lower than that of EL

andMLE. However, with both IFVR and IVVR, 𝑡𝑝 for LLOCUS is less

than a second. Finally, we observe that the EZ method, explained

in Section 3.3, has a very high 𝑡𝑝 .

4.2 LLOCUS for SATs

For this section, we reconsider the indoor area used in dataset B,

and extend our experiment to collect data for 2-3 SATs; with at

least 25 meters separation between any pair of SATs. Then, we

reuse dataset B, and extend the test set by including entries that

correspond to 2 - 3 SATs; while keeping the training sets unchanged.

We use three evaluation criteria in this section: (i) 𝑟𝑚 : Mean of the

ratio of the number of online transmitters not detected, and the

total number of active online transmitters, be it simultaneous or

not, across the test dataset, (ii) 𝑟 𝑓 : Mean of the ratio of the excess

number of online transmitters declared, and the total number of

active online transmitters, across the test dataset, (iii) Penalized

localization error, 𝜖𝑝 (meters), calculated in two steps; first, we

find the permutation between the estimated locations of the SATs

and the actual locations of SATs that results in minimum average
Table 2: Comparison of LLOCUS and SPLOT

Experimental SPLOT LLOCUS

setup 𝑟𝑚 𝑟 𝑓 𝜖𝑝 (𝑚𝑡𝑠.) 𝑟𝑚 𝑟 𝑓 𝜖𝑝 (𝑚𝑡𝑠.)

SATs, no power variation 0.04 0.1 10.94 0.05 0.1 6.09
No SAT, power variation 0.01 0.38 12.7 0.01 0.1 4.5

Mobihoc ’20, October 11–14, 2020, Boston, MA, USA Sarkar et al.

Figure 9: Latency of our LLOCUS prototype

localization error for that online entry. Then, we add a penalty of

𝑔 = 5 meters for each excess or missed transmitter. Since 𝜖𝑝 depends

on the chosen value of 𝑔, it is a relative metric, not an absolute one.

The evaluation results are shown in Table 2. Here, we use tx𝑋 , rx𝑋 ,

and rx𝑌 as in Figure 8(c), for dataset B, and 𝑧𝑟𝑒 𝑓 = −4 dBm.

In the first row of Table 2, we compare the performance of LLO-

CUS and SPLOT in the presence of SATs, but when no power varia-

tion is used in the online phase. We observe that for this case, 𝑟𝑚
and 𝑟 𝑓 is similar for both the algorithms. However, 𝜖𝑝 is lower for

LLOCUS, compared to SPLOT, due to the use of our learning-based

method. The second row of Table 2 corresponds to the absence of

SATs, but when power variation is used in the online phase. In this

case, LLOCUS has a much lower 𝑟 𝑓 compared to SPLOT, and this

penalizes SPLOT further, in terms of 𝜖𝑝 . The lower 𝑟 𝑓 in LLOCUS

results from the selection of the neighborhoods in an adaptive way.

4.3 Implementation

We build an end-to-end prototype for LLOCUS, that uses a cloud-

based compute server as the CC, with a web interface for sending

commands to the crowdsourced participants. For the convenience

of the participants, instead of the tethered RTL-SDR that we used

for collecting dataset A, B, and C, we use a low-power, portable,

and untethered SDR, that we have developed [14], with both RF

transmit and receive capability, as the crowdsourced client. We

build an Android app that runs on the participants’ smartphones

in the background, and simultaneously maintains a socket with

the CC and a Bluetooth connection to the SDR; thus it acts as an

intermediary between the CC and the SDRs. LLOCUS can also be

used with other mobile devices and in various frequency bands.

However, user level access of the RF transceiver, other than theWiFi

bands, is not available in current consumer grade mobile devices.

We anticipate that future consumer mobile devices will have SDR

capabilities to support dynamic spectrum access [22] and hence,

will be more amenable to LLOCUS. Using six of our custom built

SDRs as crowdsourced nodes, we manually set one SDR to transmit

at known instants for a predetermined duration while running

LLOCUS. Figure 9 shows that our LLOCUS prototype is able to

detect all three transmissions with a latency of up to 5 seconds.

The latency in our prototype system is due to two reasons: the

mobile devices are loosely synchronized in time, and our current

implementation pulls the RF sensing data. We expect that pushing

the RF sensing data to the CC and synchronizing the devices would

reduce the latency to ≈ 1 second.

5 CONCLUSIONS

We presented LLOCUS, a learning-based system that uses crowd-

sourcing for localizing mobile transmitters with unknown transmit

power. We identified three important challenges in learning from a

crowdsourcing system with mobile transmitters and receivers, and

described how LLOCUS addresses these challenges. We evaluated

LLOCUS using three different datasets and developed a prototype

implementation to demonstrate its higher performance and appli-

cability. Our evaluations showed that LLOCUS can learn quickly,

as it needs to collect and perform training on a small number of

training examples, and LLOCUS can learn well, enough to outper-

form the non-learning methods. Thus, LLOCUS is deployable in

dynamic crowdsourced environments with minimal overhead to a

central controller. LLOCUS may not perform very well when the

crowdsourcing nodes are not well distributed in the spatial region

of interest. Additionally, LLOCUS cannot accurately localize simul-

taneously active transmitters when they are very close to each

other. These limitations will be addressed in future work.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science

Foundation under Grant No. 1564287.

REFERENCES
[1] A. Dutta and M. Chiang. 2016. “See Something, Say Something" Crowdsourced

Enforcement of Spectrum Policies. IEEE Trans. on Wireless Communications
(2016).

[2] A. Nika et al. 2016. Empirical Validation of Commodity Spectrum Monitoring. In
ACM SenSys.

[3] A. Rai et al. 2012. Zee: Zero-Effort Crowdsourcing for Indoor Localization. In
ACM MobiCom.

[4] C. Bishop. 1995. Neural networks for pattern recognition. Oxford university press.
[5] Y. Chen and A. Terzis. 2010. On the Mechanisms and Effects of Calibrating RSSI

Measurements for 802.15.4 Radios. In Springer EWSN.
[6] A. Chakraborty et al. 2017. Specsense: Crowdsensing for Efficient Querying of

Spectrum Occupancy. In IEEE INFOCOM.
[7] A. Fragkiadakis et al. 2013. A survey on security threats and detection techniques

in cognitive radio networks. IEEE Communications Surveys & Tutorials (2013).
[8] A. Iyer et al. 2011. SpecNet: Spectrum Sensing Sans Frontieres. In USENIX NSDI.
[9] D. Pfammatter et al. 2015. A Software-defined Sensor Architecture for Large-scale

Wideband Spectrum Monitoring. In ACM IPSN.
[10] D. Yang et al. 2012. Crowdsourcing to Smartphones: Incentive Mechanism Design

for Mobile Phone Sensing. In ACM MobiCom.
[11] H. Singh et al. 2018. Privacy Enabled Crowdsourced Transmitter Localization

Using Adjusted Measurements. In IEEE PAC.
[12] K. Chintalapudi et al. 2010. Indoor Localization Without the Pain. In ACM

MobiCom.
[13] K. Yedavalli et al. 2005. Ecolocation: A Sequence Based Technique for RF Local-

ization in Wireless Sensor Networks. In IEEE IPSN.
[14] P. Smith et al. 2019. Sitara: Spectrum Measurement Goes Mobile Through Crowd-

sourcing. In IEEE MASS.
[15] S. Liu et al. 2009. Non-interactive Localization of Cognitive Radios Based on

Dynamic Signal Strength Mapping. In IEEE WONS.
[16] S. Sorour et al. 2012. RSS Based Indoor Localization with Limited Deployment

Load. In IEEE GLOBECOM.
[17] H. Wang et al. 2012. No Need to War-drive: Unsupervised Indoor Localization.

In ACM MobiSys.
[18] J. Krumm and J. Platt. 2003. Minimizing Calibration Effort for an Indoor 802.11

Device Location Measurement System. Microsoft Research, November (2003).
[19] M. Khaledi et al. 2017. Simultaneous Power-Based Localization of Transmitters

for Crowdsourced Spectrum Monitoring. In ACM MobiCom.
[20] N. Patwari et al. 2003. Relative Location Estimation in Wireless Sensor Networks.

IEEE Trans. on Signal Processing (2003).
[21] P. Bahl and V. Padmanabhan. 2000. RADAR: An In-building RF-based User

Location and Tracking System. In IEEE INFOCOM.
[22] Q. Zhao and B. Sadler. 2007. A Survey of Dynamic Spectrum Access. IEEE Signal

Processing Magazine (2007).
[23] T. Rappaport et al. 1996. Wireless communications: principles and practice. Prentice

hall PTR New Jersey.
[24] S. Shalev-Shwartz and S. Ben-David. 2014. Understanding Machine Learning:

From Theory to Algorithms. Cambridge university press.
[25] T. Zhang et al. 2014. A Vehicle-based Measurement Framework for Enhancing

Whitespace Spectrum Databases. In ACM MobiCom.
[26] M. Youssef and A. Agrawala. 2005. The Horus WLAN Location Determination

System. In ACM MobiSys.

