
Collision Prediction using UWB and Inertial
Sensing: Experimental Evaluation

Aarti Singh
Electrical and Systems Engineering

Washington University in St. Louis, USA
aartisingh@wustl.edu

Neal Patwari
McKelvey School of Engineering

Washington University in St. Louis, USA
npatwari@wustl.edu

Abstract—Real-time proximity and collision detection via radio
frequency (RF) distance measurements has application in smart
helmets, drones, autonomous vehicles, and social distancing. In
this paper we evaluate ACED, a range-based, infrastructure-
free, distributed algorithm that utilizes inter-node range data
and intra-node acceleration data to estimate the recent relative
positions of each node and to predict impending collisions
between any pair of nodes. The framework is tested and validated
using experimental data from a testbed of mobile nodes which
use ultra-wideband (UWB) ranging and inertial sensing. ACED
is shown to outperform two state-of-the-art methods.

Index Terms—Collision prediction, multidimensional scaling,
autonomous vehicles

I. INTRODUCTION

Autonomous and real-time collision prediction and collision
avoidance is crucial in a world filled with multiple mobile
entities operating in the close vicinity of each other. Collisions,
which do happen [1], are both life-threatening and expensive.
GPS and lidar are insufficient to reliably predict the collision
of small objects moving quickly towards each other, e.g.,
multiple drones, or a smart helmet and a baseball. In many
cases, it will be possible to add a radio frequency (RF)
tag to nodes, vehicles, or objects that need to monitor to
avoid collisions. However, RF tag localization systems are
insufficient to predict collisions because they do not predict
future positions, and they require a fixed, known-location in-
frastructure to calculate global map of nodes’ locations, which
may not be present, inconvenient, or expensive to deploy
for the application. We argue that, fundamentally, collision
prediction from range measurements should be distributed,
local, and relative. Fortunately, collision between two objects
does not require the coordinates of each object in a global
coordinate system because the collision between two objects
is a matter of their relative kinematics, such as their relative
position, velocity, and acceleration. In this paper, we present a
method to address this gap by enabling mobile agents of any
size or speed to predict impending collisions without relying
on a centralized infrastructure or a global reference.

A popular approach to obtain relative positions is multidi-
mensional scaling (MDS). In MDS, ‘dissimilarities’ between
each pair of objects are mapped into a low dimensional
relative coordinates such that the distances between nodes
are preserved as much as possible. MDS has been utilized
in the localization research extensively [2], however, MDS

is a centralized algorithm as it requires all dissimilarities to
be known by one processing unit. For N nodes, classical
MDS has a computational complexity of O(N3). A distributed
method of estimating location is proposed in [3], is imple-
mented with known-location infrastructure nodes. Based on
the same work, another approach is presented to obtain a
relative map of objects in motion, which although does not
require known-location infrastructure, but is centralized in
its implementation [4]. Another challenge with using MDS
to generate relative kinematics over a time period is that,
since there is no fixed frame of reference, the generated map
can undergo random translation, rotation, and flip. Therefore,
without infrastructure, successive applications of MDS over
time provides incorrect kinematics. A modification of classical
MDS such that a common frame of reference is maintained
for position and higher order kinematics (velocity and accel-
eration) is implemented in [5]. The relative kinematics are
estimated using higher order derivatives of squared distance
measurements. However, this method is highly sensitive to
noise in range measurements. In order to predict collision
from RF range measurements we need relative kinematics
estimators which are tolerant to noisy measurements. One
extension of this work is implemented to produce a kinematics
based collision prediction model, but it is limited to only linear
motion [6]. We present a robust, decentralized, infrastructure-
less algorithm ‘Autonomous Collision Estimation for Dynamic
Motion’ (ACED), that produces quality relative kinematics of
moving objects by using noisy inter-node range measurements
and intra-node acceleration data. With the estimated kine-
matics, this distributed scheme predicts the future trajectory
and any impending collision without requiring known-location
devices. In addition, our solution can be complementary to
other widely adopted technologies for collision prediction.
These technologies involving either active sensors such as lidar
[7] or radar [8], or passive sensors [9] such as cameras, are
dependent on size, shape, reflective properties, luminescence
of, and distance between the objects involved in the collision.
The algorithm presented in this paper is free of such limitations
involving physical properties of the objects.

II. PROBLEM STATEMENT

We take a network of N unknown-location nodes in a D-
dimensional space. Over a period of time, node i collects



pairwise range measurements between itself and its neighbors
Ni. We denote the range measurement between node i and
j ∈ Ni at time t as δti,j . A real-world scenario is considered
in which nodes move with arbitrary motion. The problems we
explore include:

1) estimation of the coordinates xt
i for i = 1, . . . , N

and t = 1, . . . , T , where xi ∈ RD given pairwise
range measurements {δti,j} and individual acceleration
measurements, αt

i, both taken over the time window
t = 1, . . . , T ;

2) predicting an impending collision between i and any
neighbor node in Ni at a time soon after t = T .

We assume that the primary goal of the system is to predict
collisions, but in the case of an impending collision, the recent
positions may be useful for the system reaction, for example,
to know which direction to swerve.

III. PROPOSED ALGORITHM

To achieve the goals we articulate in the Introduction, in
this section, we formulate a new cost function based on errors
between measured and calculated ranges and acceleration over
time for all nodes. Our insight is that distributed tracking can
be formulated in a distributed, low computational complexity
manner by using a majorization framework. In this frame-
work, each device estimates its recent positions locally by
minimizing its local cost function and broadcasting its newest
position estimates to its neighbors. Each node successively
refines its recent position estimates based on its range and
acceleration measurements in addition to the most recent re-
ceived position estimates from its neighbors. The majorization
approach ensures non-increasing local cost functions. Since
these local costs contribute additively to the global cost,
thus, the global cost function will be non-increasing. Further,
the local optimization step is low complexity because it is
based on finding the minimum of a quadratic (majorizing)
expression. Finally, the distributed optimization is guaranteed
to converge, because the majorization approach guarantees
each round’s global cost is non-increasing. Our algorithm
follows similarly to the scaling by majorizing a complicated
function (SMACOF) [10] approach, but expands SMACOF to
enable simultaneous estimation of multiple recent positions,
and to enable use of acceleration measurements in the cost
function.

A. Proposed Cost Function

As described in Section II, our problem is to estimate node
positions X = {xt

i}i,t to match measured ranges {δti,j} and
node acceleration measurements {αi}. Our cost function S
penalizes any coordinates that increase the squared error. We
divide S into components for each node, S(X) =

∑
i Si(X),

where the local cost function Si(X) is:

T∑
t=1

∑
j∈Ni

wt
i,j

[
δti,j − di,j(X)

]2
+ ri

[
αt

i − ai(X)
]2 ,

where the first term represents the error between measured
distances δti,j and the actual distances based on location
coordinates di,j(Xt), which are calculated as,

di,j(X) = ‖xt
i − xt

j‖ =
√

(xt
i − xt

j)
T (xt

i − xt
j). (1)

Whenever a node’s velocity changes, its non-zero acceleration
is measured by its accelerometer. We incorporate this extra
information in the latter part of the sum, representing the
error between the measured acceleration αt

i and acceleration
at
i which calculated from the coordinate path travelled as:

ai(X) =
(
xt+1
i − xt

i

)
− (xt

i − xt−1
i ). (2)

Our approach finds X̂ = argminXS(X), in a distributed
manner, to provide location estimates {x̂t

i}.
Note that Si(X) is local to ith node since it only depends

on the measurements available at ith node and positions of
its neighbour nodes. Minimizing Si(X) with respect to {xt

i}t
results in new position estimates for node i. Implementing
our approach at each node constructs the backbone of this
distributed method. We use majorization at node i to guarantee
non-increasing local cost.

Our method is described in Algorithm 1 in [11]. The algo-
rithm is iterative and must be given initial position estimates.
Generally, each time the algorithm is run, it is initialized
using the coordinates of positions from the previous round’s
estimates, xt

i for i = 0, . . . , N − 1. The first time a neighbor
j appears to node i, it must provide its own locations,
{xt

j}t=0,...,N . Here, we use classical MDS to generate any
coordinates {xt

j} for which there are no prior round estimates.

B. Regression Based Collision Prediction Algorithm

Using the relative locations estimated from previous stage,
we predict locations into the near future. Regression analysis
is widely used for prediction and forecasting, as it reveals
the causal relationships between a dependent variable and
one or a collection of independent variables. We choose
quadratic regression since trajectories are quadratic in constant
acceleration, and polynomial regression generally works well
for non-linear interpolation problems. In our case, we predict
the future trajectory of the node, which has a non-linear
relationship with time due to the dynamic nature of the motion.
The output of the polynomial regression in such a scenario
can also be interpreted as higher order kinematics. Given T
data points (t,xt

i), where the independent variable t is a time
instance and xt

i is the corresponding location of node i at times
t ∈ {1, . . . , T}, we fit a 2nd degree polynomial to approximate
node i’s location for real-valued t,

x̂i(t) = p2 + p1t+ p0t
2, (3)

where, p0, p1, and p2 are the polynomial coefficients,which
we estimate using the least squares approximation giving the
estimated coordinates X̂ . Using the coefficients, the algorithm
extrapolates future relative locations of each node, thereby,
giving future inter-object distances of each pair of nodes. We
are interested in the near future, i.e., the time-frame that is



equal to or less than the reaction time of the node, which
is application dependent. If the minimum inter-node distance
threshold between two nodes is crossed within this near future,
a collision is predicted.

IV. EXPERIMENTS

A. Hardware

We conduct a series of experiments with mobile nodes
to predict collisions between any pair of nodes. Each node
follows the architecture as described in [12]. Each such
node is attached to a iRobot Create that moves the node as
programmed. Lastly, a Raspberry Pi3 processor is attached
on top of each node, which both lets us program the node
movement, and measures the acceleration of each node via a
BN0055 IMU sensor [13].

B. Multi-node Ranging Protocol

Each node measures ranges between itself and all other
nodes, and no anchors are present in the system. An efficient
way to measure all

(
N
2

)
ranges between the N nodes is to use

the efficient multi-node ranging protocol in [6], which requires
only N message exchanges per cycle to get all the ranges.

C. Setup

We set N = 4 floor nodes to move as depicted in Figure
1 in a 6m × 6m area. Each mobile node (top right in Figure
1) undergoes acceleration as detailed in Table I, constantly
between its starting position and its stopping position in Test
I and II. Test III has node 3 in motion at constant speed, and
due to its motion in a circle, the magnitude of its acceleration
is 0.125 m/s2. We collect UWB ranges between every pair of
nodes at a rate of 18 ranges per second. The acceleration of
each node is measured via the IMU sensors and collected by
their attached Raspberry Pi at a rate of 100 samples per second.
We route the ranges and acceleration data collected by each
node to a central processing unit for offline algorithm testing
and result generation. Note that this offline implementation
is just for convenience during tests; our distributed algorithm
can be implemented in firmware at each node, and will be our
future work. Each Raspberry Pi is NTP time synchronized,
such that the timestamps for ranges and acceleration can be
matched to produce 18 range-acceleration pairs per second.
Lastly, to record the ground truth coordinates of each node
during each experiment, we use a 16-camera OptiTrack motion
capture system, which enables millimeter accuracy [14]. The
results are explained in Section V.

Test I Test II Test III

Stationary Nodes 1 2 3
Mobile Nodes 3 2 1

Acceleration (m/s2) 0.125, 0.09, 0.06 0.125, .06 0.125

TABLE I
NODE SETUP IN THREE TESTS

Fig. 1. Overview of the motions conducted by each node in three tests, and
(Top Right) photo of hardware setup.

V. RESULTS

A. Location Estimation

We first demonstrate the quality of location estimates gener-
ated from the ACED algorithm. For any of the 4 nodes, ACED
estimates the trajectory that was followed over time. We use
a window of T = 20 samples, thus each time the algorithm is
run, we estimate {xt

i} for t = 1, . . . 20 and i = 1, 2, 3, 4. In a
sliding window manner, ACED repeats by dropping the oldest
time and adding one new time, and re-running the estimation
for the next window of time. As a typical example, we plot the
T location estimates for node 2 as ‘×’ and the ground truth
locations as ‘◦’ in Figure 2. We also plot the location estimates
from another state-of-the-art method, friend-based autonomous
collision prediction and tracking (FACT) [6]. FACT assumes
a constant velocity, and hence is unable to track the curved
trajectory of node 2 from Test III at all. Furthermore, ACED
is capable of predicting future positions based on (3), which
are plotted for node 2 in the Figure 2 against the ground truth,
where we define ’near future’ as within 0.02 sec into the future.

3.9 4 4.1 4.2 4.3 4.4 4.5 4.6

x axis (meters)

-1.9

-1.8

-1.7

-1.6

-1.5

y
 a

x
is

 (
m

e
te

rs
)

Ground Truth

FACT estimates

ACED estimates

'Future' Ground Truth

'Future' FACT estimates

'Future' ACED estimates

Fig. 2. Location estimates by ACED and FACT for the node moving with
acceleration per window. ACED’s predicted ’future’ location estimates, are
also plotted against ground truth.



Fig. 3. Comparison of ACED vs. the modified MDS [5] and FACT [6] for
each test, showing RMSE averaged across all nodes.

We use the following as our metric of error for the output
of one window of any estimator:

RMSE =

[
1

N

N∑
i=1

∥∥∥xT/2
i − x̂T/2

i

∥∥∥2]1/2 , (4)

and we report the average RMSE across all sliding windows
across the entire test. Figure 3 plots this average RMSE of
location estimated for all the nodes during each test by three
methods, ACED, FACT[6] and modified MDS[5]. From [5],
we used its centralized algorithm to find a globally optimum
solution for relative position and velocity; however, it is known
to perform sub-optimally in noise [5], [6].

Our results show that the FACT method of [6] diverges over
time when motion is not linear. As described, each new run
of the algorithm uses as initialization the trajectory estimates
from the prior window. In Test III with a circular track for
node 2, as FACT estimates a linear trajectory, its initialization
from the prior window is poor. Over the course of Test III, its
estimates at some point are unable to converge to the global
optimum, after which it loses track of the coordinates and is
unable to recover, leading to a very high average RMSE across
Test III. ACED provides better tracking in dynamic motion,
and doesn’t have this convergence problem in our experiments.
ACED also compares well to the centralized modified MDS
method of [5], demonstrating a lower RMSE by 5-10x.

B. Interpolated Distance-based Collision Prediction

In order to avoid collision, a node must predict a collision
before it happens. In ACED, if the distance d̂ti,j between nodes
i and j in the near future t will fall below a threshold, dthd,
this counts as a future collision. Using the relative location
estimates from ACED, we extrapolate pairwise distances into
the near future. In this experiment, we define the near future
as within τ = 0.02 s.

We set the distance threshold dthd to allow a trade-off
between false alarms and missed detections. Letting r be the
radius of one autonomous object, we would set dthd = 2r+εd

for some εd ≥ 0. By increasing εd, we would increase
the probability of detection of a collision PD while also
increasing the probability of false alarm PFA. A user could
set the threshold based on the desired trade-off between the
two. Figure 4 shows the ROC curve, i.e., the relationship
between PD and PFA, compiled with data from across all
three tests. ACED is able to provide higher PD for the
same PFA when compared with FACT [6]. Note that even
when FACT location estimates diverge, it manages to keep an
accurate relative position and velocity for two nodes that are
very close, and thus collision predictions are good. However,
ACED cuts PFA approximately by a factor of 2 for a constant
PD compared to FACT. Since ACED provides more accurate
kinematics whenever nodes are accelerating, it can extrapolate
complicated trajectories better, thus providing accurate future
inter-node distances and kinematics to predict collisions. The
2nd degree regression coefficients are able to extrapolate the
future locations while taking each node’s acceleration into
account, a trait not achievable by FACT. We also test against
the pairwise method of [15], which does not perform nearly
as well as FACT or ACED.

0 0.05 0.1 0.15 0.2 0.25
Probability of False Alarm 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a
b
ili

ty
 o

f 
D

e
te

c
ti
o
n

 

ACED
FACT
Pairwise

Fig. 4. ROC plot comparing ACED, FACT [6], and pairwise [15].

VI. CONCLUSION

This paper presents ACED, a new approach to estimate
trajectories and predict collisions for systems involving mobile
devices that are capable of measuring node acceleration and
pairwise range measurements.The algorithm does not require
a known-location infrastructure or a centralized computation.
We test its performance in a network of four prototype mobile
nodes mounted on ground robots in three tests. ACED predicts
a node’s trajectory with an order of magnitude lower RMSE,
and collisions with a > 2x lower false alarm probability, than
three state-of-the-art infrastructure-free trajectory estimation
and collision prediction methods.

ACKNOWLEDGMENT

This work is supported in part by the US National Science
Foundation under Grant No. 1622741. We thank Alemayehu
Solomon Abrar for sharing his code with us.

REFERENCES

[1] D. Daneshvar, C. Nowinski, A. Mckee, and R. Cantu, “The epidemiology
of sport-related concussion,” Clinics in sports medicine, vol. 30, pp. 1–
17, vii, 01 2011.



[2] Y. Shang, W. Ruml, Y. Zhang, and M. P. J. Fromherz, “Localization
from mere connectivity,” in Proc. 4th ACM Intl. Symposium on Mobile
Ad Hoc Networking and Computing, ser. MobiHoc ’03, 2003, p.
201–212. [Online]. Available: https://doi.org/10.1145/778415.778439

[3] J. A. Costa, N. Patwari, and A. O. Hero III, “Distributed multidimen-
sional scaling with adaptive weighting for node localization in sensor
networks,” IEEE/ACM Transactions on Sensor Networks, vol. 2, no. 1,
pp. 39–64, Feb. 2006.

[4] B. Beck, R. Baxley, and J. Kim, “Real-time, anchor-free node tracking
using ultrawideband range and odometry data,” Proceedings - IEEE
International Conference on Ultra-Wideband, pp. 286–291, 11 2014.

[5] R. T. Rajan, G. Leus, and A.-J. van der Veen, “Relative kinematics of
an anchorless network,” 2018.

[6] A. S. Abrar, A. Luong, G. Spencer, N. Genstein, N. Patwari, and
M. Minor, “Collision prediction from uwb range measurements,” arXiv
preprint arXiv:2010.04313, 2020.

[7] P. Wei, L. Cagle, T. Reza, J. Ball, and J. Gafford, “Lidar and camera
detection fusion in a real time industrial multi-sensor collision avoidance
system,” 2018.

[8] A. Viquerat, L. Blackhall, A. Reid, S. Sukkarieh, and G. Brooker, “Re-
active collision avoidance for unmanned aerial vehicles using Doppler
radar,” in Field and Service Robotics: Results of the 6th International
Conference, C. Laugier and R. Siegwart, Eds. Springer Berlin Heidel-
berg, 2008, pp. 245–254.

[9] R. Chellappa, Gang Qian, and Qinfen Zheng, “Vehicle detection and
tracking using acoustic and video sensors,” in 2004 IEEE International
Conference on Acoustics, Speech, and Signal Processing, vol. 3, 2004,
pp. iii–793.

[10] I. Borg and P. Groenen, “Modern multidimensional scaling: Theory and
applications, volume 2 of statistics in social science and public policy,”
1997.

[11] A. Singh and N. Patwari, “Range-based collision prediction for dynamic
motion,” in 2021 IEEE 18th Annual Consumer Communications Net-
working Conference (CCNC), 2021, pp. 1–6.

[12] A. Luong, P. Hillyard, A. S. Abrar, C. Che, A. Rowe, T. Schmid,
and N. Patwari, “A stitch in time and frequency synchronization saves
bandwidth,” in ACM/IEEE Intl. Conference on Information Processing
in Sensor Networks (IPSN 2018), April 2018, pp. 96–107.

[13] K. Townsend, Adafruit BNO055 Absolute Orientation Sensor.
[Online]. Available: https://learn.adafruit.com/adafruit-bno055-absolute-
orientation-sensor/overview

[14] NaturalPoint. Motion capture systems - optitrack webpage. [Online].
Available: optitrack.com

[15] A. S. Abrar, N. Patwari, and J. Decavel-Bueff, “Demo abstract: Collision
prediction from pairwise ranging,” in 19th ACM/IEEE Intl. Conference
on Information Processing in Sensor Networks (IPSN 2020), April 2020.


