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Abstract—Real-time proximity and collision detection via radio
distance measurements has application in smart-helmets, drones,
autonomous vehicles, and social distancing. In this paper we
present a range-based, infrastructure-free, distributed algorithm
that utilizes inter-robot range data and intra-robot acceleration
data to estimate each robot’s recent positions. As the next step,
a collision prediction scheme is proposed that uses the derived
relative kinematics of each robot to predict an impending collision
between any pair of robot. The algorithm is tested and validated
with the help of ”measurement trace-based simulation of motion
involving acceleration.

Index Terms—Collision prediction, multidimensional scaling,
autonomous vehicles

I. INTRODUCTION

Autonomous and real-time collision prediction and collision
avoidance is crucial in a world filled with multiple mobile
entities operating in the close vicinity of each other. Collisions,
which do happen [1], are both life-threatening and expensive.
GPS and lidar are insufficient to reliably predict the collision
of small objects moving quickly towards each other, e.g.,
multiple drones, or a smart helmet and a baseball. In many
cases, it will be possible to add a radio frequency (RF) tag to
robots, vehicles, or objects that need to monitor to avoid colli-
sions. However, RF tag localization systems are insufficient to
predict collisions because they do not predict future positions,
and they require a fixed, known-location infrastructure which
may not be present or may be too inconvenient or expensive
to deploy for the application. Finally, using coordinates as
an intermediate step in the process of predicting collisions
is sub-optimal [11]. We argue that, fundamentally, collision
prediction from range measurements should be distributed. In
this paper, we present a method to address this gap by enabling
mobile agents of any size or speed to predict impending
collisions without relying on a centralized infrastructure.

A known-location infrastructure ( or anchors) is usually
utilized for obtaining the absolute coordinate knowledge of
the mobile objects as is done in [2], however, their availability
may not be always possible. In addition of deployment and
maintenance costs, the infrastructure can be a single point of
failure. In cases where GPS is used to know the locations of the
infrastructure, it will be unavailable indoors or in tunnels for
example. Moreover, deploying a local positioning system in-
frastructure is inappropriate when robots must operate globally

or in emergency situations e.g. first-responder drones or self-
driving vehicles. Fortunately, collision between two objects
does not require the coordinates of each object in a global
coordinate system because the collision between two objects
is a matter of their relative kinematics, such as their relative
position, velocity, and acceleration. The perspective of this
paper is that collision prediction should be local, distributed,
and relative, freeing us from requiring an infrastructure or a
global reference.

A popular approach to obtain relative positions is mul-
tidimensional scaling (MDS) [3]. In MDS, ‘dissimilarities’
between each pair of objects (e.g., ranges between robots
in our case) are mapped into a low dimensional (2D or
3D) relative coordinate as an output. The distances between
robots are preserved as much as possible and a relative
position mapping of the robots is formed without the use of
known-location infrastructure. However, MDS is a centralized
algorithm as it requires a all dissimilarities to be known
by one processing unit. For N robots, classical MDS has a
computational complexity of O(N3). A distributed method of
estimating location is proposed in [4], is but implemented with
infrastructure. Based on the same work, another approach is
presented to obtain a relative map of objects in motion, which
although does not require known-location infrastructure, but
is centralized in its implementation [5]. However,in order to
achieve true autonomy and independence from a centralized
decision maker, collision detection and prediction decision
should be made in a decentralized manner by each device.

Another challenge with using MDS to generate kinematics
over a time period is that since there is no fixed frame of
reference, the generated map can undergo random translation,
rotation, and flip. Therefore, without infrastructure, successive
application of MDS over time is going to provide incorrect
kinematics. A modification of classical MDS such that a com-
mon frame of reference is maintained for position and higher
order kinematics (velocity and acceleration) are obtained is
implemented in [6]. Using higher order derivatives of squared
distance measurements, the relative kinematics are estimated.
However, this method s highly sensitive to noise in range
measurements. However, in order to predict collision we need
relative kinematics which are tolerant to noisy measurements.

We present a robust, decentralized, infrastructure-less algo-
rithm that produces high quality estimates of the relative kine-



matics of robots by using noisy inter-node range measurements
and intra-node acceleration data. With the estimated kinemat-
ics, this distributed scheme predicts the future trajectory with-
out requiring known-location infrastructure and any impending
collision. In addition to the decentralized and infrastructure-
free approach, our solution can be complementary to other
widely adopted technologies for collision prediction. These
technologies involving either active sensors such as lidar [7],
radar [8], or passive sensors [9] such as cameras, are dependent
on size, shape, reflective properties, luminescence of, and
distance between the objects involved in the collision. The
algorithm presented in this paper is free of such limitations
involving physical properties of the objects.

II. PROBLEM STATEMENT

We take a network of N unknown-location nodes in a D-
dimensional space. Over a period of time, node i collects
pairwise range measurements between itself and its neighbors
Ni, and we use δti,j for j ∈ Ni at time t. A real-world scenario
is considered in which nodes move with arbitrary motion. The
problems we explore include:

1) estimation of the coordinates xt
i for i = 1, . . . , N

and t = 1, . . . , T , where xi ∈ RD given pairwise
range measurements {δti,j} and individual acceleration
measurements, αt

i, both taken over the time window
t = 1, . . . , T ;

2) predicting an impending collision between i and any
neighbor node in Ni at a time soon after t = T .

We assume that the primary goal of the system is to predict
collisions, but in the case of an impending collision, the recent
positions may be useful for the system reaction, for example,
to know which direction to swerve.

III. PROPOSED ALGORITHM

To achieve the goals we articulate in the Introduction, in
this section we formulate a new cost function based on errors
between measured and calculated ranges and acceleration over
time for all nodes. Our insight is that our formulation allows
for a distributed, low computational complexity algorithm in
which each device estimates its recent positions locally. It
minimizes its local cost function and broadcasts its position
estimates to its neighbors. Each node successively refines its
recent position estimates based on its range and acceleration
measurements in addition to the most recent received position
estimates from its neighbors. This distributed nature ensures
a decrease in the local cost functions, which contribute ad-
ditively. Thus each sensor contributes to the minimization of
the global cost function. Further, the local optimization step is
low complexity because it is based on finding the minimum
of a quadratic expression. Finally, the distributed optimization
is guaranteed to converge, because it is using majorization
approach which guarantees each round’s global cost is non-
increasing. Our approach follows the scaling by majorizing a
complicated function (SMACOF) [10] approach, but expands it
to enable simultaneous estimation of multiple recent positions,
and for use of acceleration measurements in the cost function.

After we present our algorithm for recent position estimation,
we then present in Section III-D how these estimates are used
to extrapolate and predict collisions.

A. Proposed Cost Function

Consider N mobile nodes with their position at time t
represented as Xt = [xt

1, ..,x
t
N ]T . Our global cost function

is:

S =

N∑
i=1

∑
j∈Ni

T∑
t=1

wt
i,j

[
δti,j − di,j(Xt)

]2
+

T∑
t=1

ri
[
αt

i − ai(x
t
i)
]2
,

(1)

where the first term represents the error between measured
distances δti,j and the actual distances based on location
coordinates di,j(Xt), which are calculated as,

di,j(X
t) = ‖xt

i − xt
j‖ =

√
(xt

i − xt
j)

T (xt
i − xt

j). (2)

Whenever a node’s velocity changes, its non-zero acceleration
is measured by its accelerometer. We incorporate this extra
information in the latter part of the sum, representing the
error between the measured acceleration αt

i and acceleration
at
i calculated from the coordinate path as follows:

ai(x
t
i) =

(
xt+1
i − xt

i

)
− (xt

i − xt−1
i )

= xt+1
i + xt−1

i − 2xt
i.

(3)

Our goal is to minimize this cost function in a distributed
manner to provide optimal location estimates {xt

i for node.
Following is an equivalent expression for S:

S =
∑
i

Si. (4)

Therefore, at each node i, we have a local cost function as:

Si =

T∑
t=1

∑
j∈Ni

wt
i,j

[
δti,j − di,j(Xt)

]2
+

T∑
t=1

ri
[
αt

i − ai(x
t
i)
]2
.

(5)

We note that Si is local to i since it only depends on the
measurements available at i and positions of neighbour nodes.
Minimizing this local cost function will result in position
estimates of this node. The majorization approach guarantees
non-increasing local cost. Implementing our approach at each
robot constructs the backbone of this distributed method. Each
local cost distributes additively over the network, thus each
sensor contributes to the minimization of the global cost
function (1) by minimizing its own local cost function (5). This
way, our algorithm produces a sequence of position estimates
with non-increasing global cost.



B. Majorization

To minimize of our local cost function, we use a majoriza-
tion approach inspired by SMACOF [10], but adding accelera-
tion, and with multiple measurements over time. SMACOF is
a gradient-decent algorithm which majorizes the cost function
of the MDS problem. Iteratively minimizing the majorizing
function guarantees a monotonously decreasing sequence of
cost values. Our algorithm starts the minimization of its cost
function 5 from an initial estimate of position and updates the
estimates until the update in position is smaller than a certain
value after a certain number of iterations. The final position
estimates are the coordinates which minimize the summed
weighted squared error. The majorizing function Ti(xi,yi)
of Si(xi) satisfies: (i) Ti(xi,yi) ≥ Si(xi) for all yi, and (ii)
Ti(xi,xi) = Si(xi). The majorizing function Ti(xi,yi) is
thus defined as:

Ti(xi, yi) =

T∑
t=1

∑
j∈Ni

wt
i,j [(δ

t
i,j)

2 + (di,j(X
t))2

−
2δti,j
dti,j(Y )

(xt
i − xt

j)
T (yt

i − yt
j)]

+

T∑
t=1

ri
[
(αt

i − at
i(x

t
i)
]2
.

(6)

Here, the majorization function Ti is quadratic in nature, so
we can find its minimum analytically. The analytical solution
comes from differentiating it with respect to {xt

i} and equating
it zero. This minimization is done iteratively until convergence
is reached to provide the values of {xt

i} for which the
majorized cost function Si is low.

C. Proposed Algorithm

The proposed method is described in Algorithm 1. It should
be noted that,

1) The algorithm requires initialized positions X(0). Gen-
erally, each round is initialized using the projected coor-
dinates of positions from the previous round’s estimates.
The first time a neighbor j appears to node i, it must
somehow provide the algorithm with {xt

j}t. We leave a
distributed initialization for this infrequent case to future
work. Here, we use classical MDS to generate {xt

j}t
when there is no estimate from a prior round.

2) The Euclidean distances (used here as the ‘dissimi-
larities’) do not have a frame of reference. They are
measured locally – node i computes its range to each
neighbor, and node i also measures its own acceleration
vector α(t)

i .
3) The weights applied to measured acceleration ri should

be chosen to account for accuracy of acceleration mea-
surement for each node i. Lower values of ri indicate
more noisy measurements.

4) For all the measured δi,j , the weights wi,j are simplisti-
cally set as equation 7, in essence making all the other
j nodes as i’s neighbors i.e. j ∈ Ni.

wi,j =

{
1, if δi,j is measured.
0, otherwise.

(7)

However they can be adaptively set as a function of
measurements δi,j such as to reflect its accuracy, such
that less accurate measurements are down-weighted in
the overall cost function and only the nodes with less
noisy measurements are counted as neighbors.

Algorithm 1: Location Estimation with Ranges and
acceleration data
Inputs :

{
δti,j
}
, {wt

i,j}, ε, {ri}, X(0), {αt
i}

Initialize : k = 0, S(0), ai compute qi from
Equation (8)

repeat
k = k+1;
for i = 1 to N do

for t = 1 to T do
compute bk−1i ;
xt
i ← qiri(2x

t+1
i +2xt−1

i −xt+2
i −xt−2

i +

αt+1 +αt−1 −αt) + qiX
(k−1)b

(k−1)
i ;

S(k) ← S(k) − S(k−1)
i + S

(k)
i ;

send {xt
i}t to friend nodes;

send S(k) to node (i+ 1) mod N;

until S(k−1) − S(k) < ε;

The two helper variables used in the algorithm are q and b
given by:

q−1i =
∑
j∈Ni

wi,j + ri (8)

and b(k)i = [b1, b2, .., bN ]T is a vector given by

bj = wi,j [1− δti,j/di,j(X(k))]

bi =
∑
j∈Ni

wi,jδ
t
i,j/di,j(X

(k)) (9)

D. Regression Based Collision Prediction Algorithm

Mobile agents in a network run a risk of colliding with each
other and thus, need to have autonomous decisions making
capabilities whether to pursue or move away from a trajectory.
Predicting any future collisions between two agents involves
predicting whether individual motions of those two moving
agents will intersect, which depends on the knowledge of
relative kinematics of those two. Using the relative locations
estimated from previous stage, we can predict locations into
the nearby future. Regression analysis is widely used for pre-
diction and forecasting, as they reveal the causal relationships
between a dependent variable and one or a collection of
independent variables in a fixed dataset, which can later be
used to estimate causal relationships using new observational
data.

We choose polynomial regression since it works very well
for non-linear interpolation problems. In our case, we seek to



predict the future locations of the agent or robot which has a
non-linear relationship with time due to the dynamic nature of
the motion. The output of the polynomial regression in such a
scenario can also be interpreted as higher order kinematics.
Given T data points (ti,xi), where, dependent variable ti
is a time instance and xi is the corresponding location of
a robot i, for i = (1, 2, ...T ), we fit a 2nd degree polynomial
to approximate the robot’s locations,

xi = p2 + p1ti + p0t
2
i (10)

Here, p0, p1, and p2 make the coefficient of this polynomial
that predicts the location xi with estimation errors. We use
least squares approximation, in which the polynomial coeffi-
cients can be obtained by minimizing the sum of the error
squares. These coefficients are used to extrapolate values for
the polynomial, giving us future relative locations, thereby,
giving us future inter-object distances of two robots. We
define future as a time-frame that is equal to or less than the
reaction time of the robot. If the minimum inter-robot distance
threshold between two robots is crossed within this time into
future, a collision is predicted. We define collisions based
on various distance thresholds and can detect collisions by
comparing the extrapolated distances with these user-defined
distance thresholds. In Section IV, we evaluate the perfor-
mance of this regression-based collision prediction method for
different distance thresholds, while also analyzing the location
estimated from our algorithm.

IV. RESULTS

In this section we test our proposed algorithm in terms of
location estimation and collision prediction using simulated
data. We demonstrate the performance of the proposed al-
gorithm on a network of 4 robots with unknown location
arranged on a uniform grid of 4x4 area units. Three robots
are stationary and one robot is made to travel in a circular
motion which contributes to it having acceleration. No known-
location infrastructure is present and only inter-robot ranges
and each robot’s acceleration are calculated and used by
our proposed algorithm. We trust that this simulation can be
realized with an experiment conducted with irobots having
UWB tags for ranging and inertial measurement units for
acceleration measurements. In that case, the ranges obtained
will be prone to error and noise. For this preliminary study,
we introduce noise to ranging measurement, with standard
deviation of 0.02 meters as per the findings in [11]. Using this
range data, we present the results in the following section.

A. Location Estimation

We first demonstrate the quality of location estimates gen-
erated from our algorithm. For the N = 4 robots, 1 robot
moving in a near-circular motion for multiple laps and 3 being
stationary (thus, all having relative motion), we are able to
track the curved trajectory that was followed by the mobile
robot over time. We take a window of 20 instances at once
(T = 20), and for all i in N , we estimate 20 locations {xt

i},
one for each time instance of the window. In a sliding window

Fig. 1. Location estimates only for the moving robot: Blue triangles represents
our algorithm’s location estimates plotted on top of black circles representing
the ground truth of the robot in motion. The measured distances have added
noise with st. deviation of 0.02 and algorithm runs only when a user-defined
proximity distance threshold is crossed.

manner, next window’s 20 estimates are calculated. We keep
the middle point (T/2) as an ‘average’ solution from that
window with respect to the center point of that window’s
ground truth. Plotting T/2′s estimates versus ground truth,
in Figure 1 we see location estimates for only robot-2 (n2).
The ground truth of each robot and its estimated positions
are marked ‘o’ and ‘B’ respectively, where the lines represent
the offset between the estimates and ground truth. In Figure
2, each window’s such middle location estimates (in red)
for robot-2 are plotted against its ground truth (black) for
its circular trajectory. Also, the stationary robots (n 0, 1, 3)
are plotted for their estimated locations and ground truth,
alongside robot-2’s circular motion so as to provide a complete
picture of the experiments. We see that our algorithm is able
to estimate the locations of all the robots, more importantly
of robot-2, and commendably able to follow the trajectory of
robot-2’s motion over time.

Next, we compare the performance of our algorithm with
another MDS-based localization algorithm [6]. For one time
window, this method provides joint higher order relative
kinematics estimates (position, velocity, and acceleration),
however, they are extremely sensitive to ranging noise. Figure
3 shows the root mean square error (RMSE) of location
estimated for each robot by the two methods when compared
to ground truth. We can see that our algorithm outperforms the
other MDS-based implementation, which is credited to our
algorithm’s capability of providing better position estimates
by incorporating the robots’ acceleration information in cost
function minimization. This makes the algorithm to trace the
motion well and provide a lower RMSE by one order of
magnitude when compared to the other MDS-based method.

We emphasizes that none of the robots’ locations are known
before the start of our algorithm, i.e. there is no known-
location infrastructure (anchors) present in the system. Every
node independently runs our proposed algorithm to estimate
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Fig. 2. Location estimates for all the robots in the system (4 here): Each
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distances have added noise with st. deviation of 0.02 and algorithm runs only
when a user-defined proximity distance threshold is crossed.

Fig. 3. RMSE comparison location estimates from MDS and our algorithm,
with distances having added noise of standard deviation 0.02

an optimal solution for its position. That is, after receiving it’s
neighbours optimal solution and using its own acceleration,
each node conducts a successful minimization of its local cost
function as explained in Section III-B. However, we translate
one device to become the origin (n0) to constitute a consistent
frame of reference, although it should be noted that this does
not change the relative positions among the robots, and yet is
helpful when we need to compare against a ground truth with
similar translation. Additionally, the received estimates from
one device’s neighbours can be noisy and hence can impact the
optimal solution for that node. We explore the performance of
estimated locations when different amount of noise is present
in measured inter-robot ranges. In Figure 4, we see that as the
noise in the range measurements is increased, the error in the
position estimated with our algorithm also increases for all the
nodes n1,n2, and n3.

Fig. 4. RMSE of the position estimates for each node Versus various levels
of noise in the range measurement

B. Interpolated Distance-based Collision Prediction

In order to avoid collision, a device or robot needs to make
a prediction whether it is going to collide or not, before
it happens. For collision prediction, only relative position
between two robots is enough to predict any future distance
threshold violation that counts as collision. Using relative lo-
cation estimates from our algorithm, we extrapolate distances
from the model explained in III-D. Let us say that the future
separation i.e. distance d̂ti,j between two robots i and j goes
lower than a threshold at some time into the nearby future.
We define future as a time window equal to reaction time of a
robot. If the predicted distances between two robots go under
a set threshold within this window, robots can not swerve to
avoid collision and collision in the future is predicted. The
reaction time τ for each robot is taken as 0.09 seconds for
all simulations. Within this reaction time into the future, if
the predicted distances distance d̂ti,j is smaller than any pre-
decided minimum-distance threshold dthd, it is counted as a
collision. Note that separation between the center of two robots
is at least 2 times its radius r, which is equal to the diameter
of one robot (0.34 meter is the diameter of one common
irobot). Adding extra distance value εd to 2r, we get minimum-
distance threshold, given as

dthd = εd + 2r (11)

If future inter-robot distances into the future are under this
value it is counted as a collision. Figure 5 shows the receiver
operating characteristic where the probability of detection PD

of collision is given as the function the probability of false
alarm. We report that our extrapolation based collision predic-
tion model is able to provide higher probability of detection
for the same probability of false alarms when compared with
the other kinematics method FACT [11]. Our algorithm gives
100% detection with a 2% False Alarm, where as FACT gives
a detection of 80% at same false alarm rate. Another collision
detection approach based on pairwise regression performs even
worse. This is because our algorithm’s localization provides
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accurate position estimates for any degree of complex motion,
which lets us extrapolate complex trajectories very well, giving
extremely accurate future inter-robot distances and kinematics
to predict collisions. The 2nd degree regression’s coefficients
are able to extrapolate the future locations while taking each
robot’s acceleration into account, a trait not achievable by
FACT or pairwise regression.

Lastly, as explained in Section IV, robots equipped with
UWB tags for ranging have inter-robot ranges prone to noise.
Prediction of future locations, and thereafter collisions, by
using these noisy range measurements can be studied as a
function of noise. In order to investigate the effect of noise,
we test our collision prediction methodology for noisy range
measurements with varying standard deviation. The results
corroborates the intuition that the detection accuracy deteri-
orates with increase in noise as is shown in Figure 6.

V. CONCLUSIONS

This paper presented a new approach to estimate locations
and predict collisions for systems involving mobile devices

that are capable of communicating their range measurements
to each other. Our method uses each device’s acceleration into
estimating location coordinates for every device, achieving a
commendable location estimation performance. The algorithm
extends further by predicting collisions into future and it does
not require a known-location infrastructure or a central deci-
sion maker to achieve a good collision prediction performance.
We test its performance in simulation settings and provide a
detailed analysis of results.
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