
Online learning for dynamic impending collision prediction
using FMCW radar

AARTI SINGH,Washington University in St. Louis, USA
NEAL PATWARI,Washington University in St. Louis, USA

Radar collision prediction systems can play a crucial role in safety critical applications, such as autonomous
vehicles and smart helmets for contact sports, by predicting impending collision just before it will occur.
Collision prediction algorithms use the velocity and range measurements provided by radar to calculate
time to collision. However, radar measurements used in such systems contain significant clutter, noise, and
inaccuracies which hamper reliability. Existing solutions to reduce clutter are based on static filtering methods.
In this paper, we present a deep learning approach using frequency modulated continuous wave (FMCW) radar
and inertial sensing that learns the environmental and user-specific conditions that lead to future collisions. We
present a process of converting raw radar samples to range-Doppler matrices (RDMs) and then training a deep
convolutional neural network that outputs predictions (impending collision vs. none) for any measured RDM.
The system is retrained to work in dynamically changing environments and maintain prediction accuracy. We
demonstrate the effectiveness of our approach of using the information from radar data to predict impending
collisions in real-time via real-world experiments, and show that our method achieves an F1-score of 0.91 and
outperforms a traditional approach in accuracy and adaptability.
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1 INTRODUCTION
Collision warning systems (CWS) aid in providing safety measures in a variety of applications. In
the field of contact sports, physical collisions between players cause 1.6 to 3.8 million concussions
or traumatic brain injuries (TBI) annually in the United States, and American football is a most
prominent contributor of these TBIs [16]. Such concussions are life-altering and adversely affect
players throughout their lives [21]. Traditional protective gear such as helmets can reduce the
severity of such concussions, however, they are limited in their utility, as even with the helmets
concussions occur. Preventative measures are an important part of protection. Predicting the
collisions that are about to occur before they happen could dramatically improve outcomes [45].
Rather than after-the fact detection of a collision, we argue it is critical to predict collision and warn
the player more than their reaction time before the collision. One solution is to equip the player with
smart wearable device that predicts the impending collisions. A smart helmet could automatically
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and actively adapt its damping to reduce harm upon impact [7]. Alternatively, it could supply a
loud auditory warning to the player that allows them to react. New research suggests that warnings
prior to impact allow people to ‘prepare themselves, effectively mitigating the consequence of
the impact’ [44]. Our radar-based collision prediction system has the goal of enabling such active
responses from players and their helmets.

Fig. 1. Proposed collision prediction system overview: The hardware block present on a mobile node is capable
of sensing the environment with the help of a FMCW radar-based sensing and notes its inertial measurements.
The learning framework uses measurements to generate radar-Doppler matrices (RDMs) that are fed to a
trained model for inferring impending collisions. Simultaneously, the model is periodically re-trained with
the latest labelled RDMs to improve results in a changing environment.

Collision prediction systems also find utilization in the field of automation, where frequent
collisions encountered by the mobile nodes such as unmanned aerial vehicles (UAVs) and robots
cause nuisance and damage. Collision warning systems for vehicles [30], [4], [78] have developed
solutions that can be applied to combat the collision problem faced in automation. For example,
centralized algorithms such as [17], [12] can provide location information to mobile nodes in a
network to locate surrounding nodes and predict impending collisions. As an alternative, distributed
and cooperative solutions to obtain locations are also well studied [47]. Similarly, mobile nodes can
rely on network-provided information to locate themselves and predict any collisions with other
nodes [2]. These localization methods are suitable for nodes that are part of a network. However,
every object encountered by the mobile node may not be associated with the same network as the
mobile node. Therefore, in order for a mobile node to predict impending collisions with any kind
of objects in the environment, it should be able to perform standalone sensing of all objects in its
environment without requiring a network of sensors.

It should be noted that collision prediction is fundamentally different than localization. Collision
prediction must take into account not only the present positions of objects in the environment, or
positions at any single future time, but all of the positions between now and a future time in order
to know whether a collision will occur at any point in that time period. As a benefit compared
to localization, however, collision prediction uses only the relative kinematics (such as relative
range, relative velocity), rather than absolute coordinate information of the objects. We address the
complexity of estimating positions across a time period; and take advantage of the relative nature
of collision prediction in the methods developed in this paper.
We consider a mobile node that is envisioned to be equipped with sensing and processing

capabilities that allow it to make standalone measurements from the environment and self-sufficient
decisions about impending collisions. The sensors are required to be low cost, compact, lightweight,
and capable of processing information to predict collisions with a low false positive rate. There
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are several sensor options available for CWS, each with their advantages and limitations [70]. In
the case of sensing within a network of nodes, paired communication with other tagged devices
is achieved using ultra-wide band (UWB) [61] or radio frequency identification (RFID) sensors.
However, for sensing of the entire environment for possible collision with both tagged and un-
tagged objects, standalone sensing is required. LiDARs (light detection and ranging) are expensive
sensors that provide rich information about scenes and targets, but can be susceptible to severe
weather. Ultrasonic sensors are affordable and compact and are suitable for very short-range
detection. Vision-based solutions do not perform well for long distances, in poor light, and in
complex, real-world conditions. Radars have been extensively studied in literature, especially for
automotive applications [22] and unlike radio frequency tags, in which each device must receive
reflections from other tagged devices for pairwise ranging, radars are capable of sensing all objects
with electromagnetic properties different from air that are present in the field of view, without
requiring additional sensors on the surrounding objects. Moreover, FMCW radars are inexpensive,
compact sensors that can measure the relative kinematics (range and range-rate) of the objects in
the field-of-view in real-time. Building on this standalone sensing capability of FMCW radars, a
performance study of FMCW radars is presented in [11] where the authors analyse the use of an
‘impact parameter’ in predicting collisions. It must be emphasized that in practice, the accuracy of
range and velocity measurements from radars suffers due to system noise and unwanted scattering
and reflection, including ‘self-motion’, which collectively are referred to as ‘clutter’, which are a
function of the material properties of the other objects in the environment that we are not concerned
about the robot colliding with, including itself, or anything that would not cause problems if hit.
Commonly used techniques to remove clutter are empirical mode decomposition [49], principal
component analysis, and independent component analysis. However, working with non-stationary
objects, the effect of such interference can be dynamic. Traditional collision prediction methods
require these static filtering and pre-processing techniques which may not be effective in the
environment in which it is deployed. Traditional methods cannot adapt to the type and style of play
of an individual sports player. Learning-based solutions, on the other hand, can offer flexible and
data-dependent prediction capabilities in order to efficiently utilize FMCW radars for dynamically
changing environments. In the smart helmet application, they can also learn player-specific mobility
patterns that do and do not lead to collisions.
Furthermore, the learning-based solutions need to be robust against degrading performance

when there is shift in the input data characteristics, therefore it is necessary that a learning-based
model’s parameters be continuously adjusted for new or dynamic environments. The machine
learning paradigm of online learning is a continuous learning process to learn more efficiently with
the data arriving incrementally, to perform the same learning task over time, by the model that
is already deployed. When a new labeled data sample arrives, online learning allows the existing
model to quickly update its parameters to produce the best model so far. However, incrementally
updating with the newest data leads to catastrophic forgetting [48], where learning only a small
amount of new information can overwrite established knowledge and cause complete loss of ability
to operate on previously learned tasks. Incremental batch learning solves the problem of online
catastrophic forgetting by utilizing a series of batches of new labeled samples. After a batch has
been received, the model loops over the batch until it is adequately learned, and then the model can
be tested on information in that batch and previous batches. However, due to limited resources and
requirement for fast on-device learning, only the relevant samples that carry new information must
be used for learning incrementally. The field of active learning [59] provides methods for selecting
those most relevant labelled samples thereby reducing the size of information that is necessary
for decision making. Taking advantage of the on-going research in the field of online incremental
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learning, we present a functional and practical real-time algorithm that adapt its parameters with
the dynamically changing environments.
In this paper, we extend the nascent idea of utilizing FMCW radars for collision prediction in

noisy and cluttered environments, when motion is dynamic and changing. Typical CWS methods
[10] implement parametric algorithms where collision risk is measured by calculating node specific
parameters, such as its range and velocity. However, these parameters are prone to inaccuracies
when measured via a radar in cluttered environments. In order to tackle this, we utilize the research
done in the field of computer vision and machine learning. As presented in Fig. 1, we propose
a learning-based solution to demonstrate the effectiveness of using only the range and radial
velocity (range-rate) information obtained from RDMs for predicting impending collision with
the help of a convolution neural network (CNN). The proposed deep learning framework extracts
adaptable features from the (continuously changing) environment, thereby eliminating the need
for static filtering. Moreover, we apply online learning strategies, as well as automated labelling
using accelerometer measurements, in order to make the the CNN classifier adaptable and learn
from the recent history of the dynamically changing environment.

Challenges. In order to solve the collision prediction problem using FMCW radar and deep learning
in a cluttered and dynamic environment, we face the following challenges:

• The presence of clutter in the radar measurements requires extensive filtering to get accurate
measurement of the relative range and relative speed for collision prediction.

• Working with static features for machine learning solutions deteriorates the performance
of the such solutions operating in new types of environments or dynamically changing
environments.

• The dataset obtained for building a collision prediction system suffers from class imbalance
due to the fact that real collisions happen only rarely compared to non-collisions.

Contributions. Overall, we make the following contributions.

• We develop a novel data-driven, learning-based collision prediction method that uses only
radar and inertial data to detect an impending collision.

• We remove the need of static filtering by using the unfiltered, raw radar data for collision
prediction, relying on deep learning to extract useful features for predicting collisions.

• We alleviate the class imbalance problem by assigning weights to each class as per their
respective frequency in the dataset to achieve high classification accuracy for all the classes.

• We provide a retraining framework by using automated labelling and uncertainty sampling
for improving prediction performance in changing environments and for dynamic motion.

• We experimentally collect and publish a large dataset to mimic real-world collision scenarios.
We use the dataset to validate that our proposed method performs well in comparison with
other non-learning collision warning methods and traditional machine learning methods.

In short, this paper presents and evaluates a novel approach to radar-based collision prediction
which adapts, automatically, to the particular environment and characteristics of motion. We expect
that it will expand the set of applications in which radar-based CWS can be successful.

2 METHODOLOGY
In this section we formally define the problem statement, the notation for the measurements, the
loss function utilized in the learning framework, the learning model used to minimize the loss
function, and the retraining procedure in detail.
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2.1 Problem Statement
We consider a mobile node which has an attached FMCW radar, an inertial sensor to measure
node’s acceleration, and a processor for computing.

The mobile node is moving in an environment with several obstacles. Let us consider the scenario
where the radar-enabled node is moving towards an obstacle. Let 𝑑 (𝑡) be the range and 𝑣 (𝑡) is the
relative velocity between the mobile node and the obstacle at time 𝑡 . During one measurement time
period between 𝑡1 and 𝑡2 > 𝑡1, duration 𝑇 = 𝑡2 − 𝑡1, the node collects samples from the radar and
inertial sensor. At time 𝑡2 it converts them to a range-Doppler matrix, 𝑋𝑡2 .
The goal of our system is to raise an alarm at 𝑡2 if at any time 𝑡 ∈ [𝑡2, 𝑡2 + 𝛿𝑡], that 𝑑 (𝑡) < 𝜖 ,

where 𝛿𝑡 > 0 is the time duration into the immediate future for which we must detect a future
collision. Also, 𝜖 > 0 is a collision proximity range threshold. In other words, if the measurement
indicates that the node will collide with the object within the next 𝛿𝑡 period of time, the alarm
should be raised. In order to achieve this, we create system that can learn a function 𝑓 that maps
from the range-Doppler matrix to a binary decision about whether there will be an impending
collision.

2.2 Learning Framework
For the collision prediction problem, the inputs we use are RDMmatrices, named𝑋 , that get mapped
via the function 𝑓 to 𝑦 ∈ {0, 1}, where class 0 is encoded as 0 for representing ‘no impending
collision’ and class 1 is encoded as 1 representing ‘impending collision’. This makes collision
prediction a binary classification problem. Supervised learning-based approaches require a training
set of ‘measurement-label’ pairs [(𝑋1, 𝑦1), ...(𝑋𝑛, 𝑦𝑛)] where 𝑛 is the total number of pairs in one
training set, 𝑋 𝑗 is matrix 𝑗 and 𝑦 𝑗 is its collision label, such that 𝑗 ∈ {1, ..., 𝑛}.

Loss Function
In order to learn the optimal mapping 𝑓 between 𝑅𝐷𝑀 and 𝑦, a classifier for two classes needs to
minimize a loss function 𝐿 for the entire training set of size 𝑛, given by

𝐿 = − 1
𝑛

𝑛∑︁
𝑗=1

[𝑦 𝑗 log(𝑝 𝑗 ) + (1 − 𝑦 𝑗 ) log(1 − 𝑝 𝑗 )], (1)

where 𝑝 𝑗 is the probability of the 𝑗𝑡ℎ data point belonging to a class as predicted by the mapping.
Taking an average over the entire dataset of size 𝑛, we get cross entropy loss 𝐿, a standard loss
function for classification problems.

CNN-based Classifiers
CNNs have become widely popular for image-based machine learning tasks. Compared to the
standard MLP architectures, a CNN architecture uses far fewer parameters and can have much
deeper architectures which can equip us to solve more complex problems. There are several CNN
architectures available with varying degrees of computational complexity and performance.

For our learning-based solution, we test two CNN architectures: (a) ResNet architecture, since it
has shown the top-5 error rate on ImageNet dataset [27] and (b) MobileNet-V3 architecture, since
it has been optimized for low-resource devices and low latency applications [28].

2.3 Radar Signal Processing
The FMCW radar transmits sequences of a linear frequency modulated (LFM) signal, also called a
‘chirp’ signal having 𝑁 samples per chirp, which increases its frequency linearly with time with a
bandwidth of 𝐵 Hz and chirp duration (also called pulse repetition interval) of 𝑇𝑐 . The slope 𝑠 of
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the chirp represents the rate of change of frequency, thus 𝑠 = 𝐵/𝑇𝑐 . Once the radar receives the
reflected signals that bounce back from the target, they are mixed with the transmitted signals to
obtain a ‘beat signal’. The beat signal is characterized by the beat frequency, 𝑓𝑏 , which is equal to
2𝑑𝑠/𝑐 , where 𝑑 is the range of the object from the radar and 𝑐 is the speed of light. This frequency
is used to infer the range of the target from the radar sensor. A fast Fourier transform (FFT), called
the ‘range-FFT’, is performed on the beat signal to convert it into the frequency domain, thereby
obtaining the beat frequencies representing one or multiple objects at various ranges, with a range
resolution of 𝑐/2𝐵 and up to the maximum range of 𝑓𝑠𝑐/2𝑠 , where 𝑓𝑠 is the sampling rate, such
that 𝑓𝑠 = 𝑁 /𝑇𝑐 [51]. A second FFT, called the ‘velocity-FFT’, is then performed across a certain
𝑀 number of chirps that make one RDM, to estimate the relative radial velocity. It is left to the
discretion of the designer to define how many of the chirps are going to be processed together
into an RDM (due to processor limitations and/or resolution requirements) [20]. Our proposed
method implements this 2-D FFT stage and generate a 𝑁 ×𝑀 matrix, which is referred to as the
radar-Doppler matrix (RDM), that indicates the amplitude of scattering from each possible relative
range and velocity across the possible range of measured range and velocities.
It should be noted that reflection and scattering of the radar signals by objects are a function

of the intrinsic properties of the material of the objects, such as dielectric permittivity, magnetic
permeability, and electrical conductivity [63]. These properties have been shown to be effective in
object distinction and detection [73]. Additionally, the extrinsic characteristic such as the absolute
size of the objects and the size of the objects relative to the wavelength of the radar signals play a
crucial role in the amplitudes of scattering received in the radar reflections. Therefore, different
types of objects produce different amplitudes of scattering within RDMs.

2.4 Label Creation
Our proposed system automatically generates (with a sub-second delay) labels for the collected
radar data using inertial sensing. This labelled training data can be used to automatically retrain
the model in order to improve results for the particular environment and user characteristics that
are observed during operations.
As a collision between the moving node and an obstacle occurs, the moving node experiences

a sudden change in velocity. This change in velocity can be clearly observed as a change in
the measured acceleration, for example, as a sharp drop or negative peak in mobile node’s IMU
measurements, as seen in Fig. 2a. During normal operation we obtain these ‘moments of collision’
by the finding peaks in a node’s measured acceleration data.

A collision prediction system should alert the nodes about impending collisions before they hap-
pen such that the colliding nodes have time to act preemptively to avoid the collision. Considering
an alert can be raised instantaneously by a collision prediction system without any mechanical
or processing delay, a node receiving this alert, however, will take time equal to its reaction time
for any responsive action. To have at least one alert sent by the system to the node before any
impending collision, the immediate future 𝛿𝑡 required to check for impending collisions must be at
least equal to the reaction time of the node. Thus, if a collision occurs at 𝛿𝑡 into the future, it can be
avoided or ameliorated by issuing one alert at a time that is 𝛿𝑡 before the collision. Depending on
the reaction time of the node and the number as well as the frequency of alerts needed for the node
(robots or human) in any specific application (vehicular or sports-related), the threshold for 𝛿𝑡 can
be adjusted. Based on this approach, for labelling purposes, all the measurements (the RDMs in our
case), that happened within 𝛿𝑡 from each moment of collision as measured by IMU are labelled
as ‘Impending Collision’ (shown as magenta colored square markers on trajectory as shown in
Fig. 2b). The rest of the RDMs are labelled as ‘No Impending Collision’ (shown as blue colored circle
markers as shown in Fig. 2b). The labelled images are then used to train our CNN-based model
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Fig. 2. Demonstration of the label creation scheme using moving node’s deceleration measurement from its
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at the subsequent training time to build the next model that provides inference about impending
collisions when encountering new, unseen test RDM samples.

It should be noted that in real-world scenarios, false labelling is possible, where, for example due to
sensor noise or outdated thresholds, RDMs can be labelled incorrectly through the current labelling
scheme. This leads to ‘label-shift’. Deep-learning models tend to be robust against infrequent and
randomly mislabeled data, treating the labels as noise or outliers. The ability of a model to treat a
small number of incorrect labels as noise depends on the quality and quantity of the noisy data,
and the overall complexity of the problem being solved. Therefore, precautions are suggested in the
choice of IMU sensors and the threshold of the deceleration for the application. Other traditional
techniques can also be adapted to handle the label noise prior to training such as label smoothing,
example weighting, and custom loss functions [32].

2.5 Class Imbalance Problem
During system operation, the radar is continuously sensing the environment. Even in the environ-
ments that are densely populated with obstacles, the events during which a collision is imminent is
considerably lower in frequency than the frequency of events in which the node is not in danger of
an imminent collision. With the labelling scheme for the generated RDMs described above, the
number of RDMs labelled as ‘impending collision’ are order of magnitudes lower than the number
of RDMs labelled as ‘no impending collision’, which leads to an imbalanced dataset.
Imbalanced datasets, such as the state of the art Give-Me-Some-Credit dataset [33] and statlog

heart disease dataset[67], are common in anomaly detection, medical diagnosis, fraud detection,
and are challenging to tackle in machine learning domain, as the standard learning algorithms may
struggle to perform well on minority classes due to the bias introduced by the majority class. There
are many methods to tackle this challenge: re-sampling methods which include over-sampling of
the less frequent class using random, SMOTE (Synthetic Minority Over-sampling Technique), and
ADASYN (Adaptive Synthetic Sampling) techniques, or under-sampling of the more frequent class
using random and Tomek links [13], [26], [66]. However, important considerations needed to be
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weighed before applying these. For example, in over-sampling, increasing the size of the training
set without gaining any additional information might not add any benefit, and can introduce
noise. On the other hand, under-sampling might lead to discarding of the relevant information.
Other methods include the use of tree-based algorithms or ensemble methods like bagging and
boosting, which might lead to over-fitting [31] and hence poor generalization to new data. There
is no one-size-fits-all answer to which method is better for addressing imbalanced datasets, as
the effectiveness of different methods or combination of different methods depends on various
trade-offs and factors such as computational cost, interpretability, and evaluation metrics. For our
system, we refrain from using the over-sampling techniques as they might increase the size of the
dataset without adding any useful information, thereby increasing the computational load on the
resources required for training the model in general. Furthermore, under-sampling methods are
not explored as a possible solution for our system’s imbalanced dataset problem as under-sampling
may remove the data points that otherwise would provide the highest uncertainty during inference,
a required criteria for our retraining framework, such that we can make our system to be robust
against data-drift.

Instead, we use the method proposed in [37], in which each class is assigned class weights that
is inversely proportional to their respective frequencies, such that

𝑤 𝑗 =
|𝐶1 | + |𝐶0 |

2|𝐶 𝑗 |
, (2)

where |𝐶 𝑗 | is the number of samples in class 𝑗 ∈ {0, 1} . Assigning a small weight to the cost
function for the more frequent class during training results in a smaller error value, and thus, small
update to the model coefficients for the more frequent class. A large weight applied to the cost
function for the less frequent class will result in a larger error calculation, and in turn, large update
to the model coefficients for the less frequent class. This way, we can shift the imbalance of the
model so that it could reduce the errors of the less frequent class. Choosing this method provides
highest interpretability compared to other methods, while it also maintains original distribution of
instances and preserves the inherent patterns and relationships in the data.
An additional problem encountered for imbalanced datasets is that using the accuracy of the

model to assess its performance becomes a less reliable metric because an acceptable accuracy is
possible to obtain even if the model has excellent classification performance for more frequent
class and poor performance on the other, less frequent class [38]. Thus, instead of using accuracy to
pick the best model, we use the 𝐹1 score as a metric that describes the performance of the classifier
on both the classes. 𝐹1 score is the harmonic mean of the positive predictive value (𝑃 , also called
precision) and true positive rate (𝑅, also called recall or probability of detection(𝑃𝐷 )) given by

𝐹1 =
2𝑃𝑅
𝑃 + 𝑅

, (3)

where 𝑃 is the fraction of correctly classified positive instances (‘impending collision’ in our case)
among the overall instances that are classified as positive, while 𝑅 is the fraction of correctly
classified positive instances among the overall instances that are truly positive. A high 𝐹1 score
indicates low misclassifications in both of the classes. Therefore, during training epochs, we select
the model which has the highest 𝐹1 score.

2.6 Online Learning Framework
Real-world implementation of any collision system experiences a continuous influx of new data in
real-time. A static learning-based solution leads to decreased inference performance, especially if
the new data is from different distributions, as a result of, for example, changing user behaviour or
environmental conditions compared to the previous data on which the model was trained.
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This phenomena is called data-drift, which includes changes in the distribution of the data (co-
variate shift), changes in the distribution of the labels (label shift), and changes in the distribution
of the relation between data and labels (concept drift) [29]. Domain adaptation, transfer learning,
fine-tuning, and continual learning enable models to adapt to the changing data distributions
and maintain good performance, however, these methods need large amount of the dynamically
changing data. On the other hand, meta-learning provide solutions that have advantage of working
with only a few or single instances of new data [18]. However, if the data distribution of the target
task significantly deviates from the data distribution of the training tasks, the performance of
the meta-learning methods model may degrade and hence, are not seen as a better alternative
[72], [76]. Moreover, since our system in question experiences abundant data that has undergone
distribution-shift, there is value in utilizing all the relevant data in our application. In order to
maintain model’s inference performance over time on new, unseen data that has experienced
data-drift, one of the techniques is to periodically retrain the model to tackle data-drift in real-world
applications. Model retraining is defined as re-running the process that generated the previously
selected model, however, on a new training dataset that has experienced data drift. This can be
computationally expensive, thus, we explore the branch of active learning and suggest the following
retraining strategy:

• Continuously collect system’s IMU-labelled RDMs from recent history to form a retraining
dataset.

• Based on the system requirement for the retraining latency, select a fraction of the collected
dataset using the uncertainty-sampling technique [40].

• Periodically retrain the default or current model using this newly sampled subset of data.
• Repeat the above steps for the newest recent history of dataset collected.

It should be noted in real-world scenarios of using the automated labelling scheme can experience
noise or ‘label-shift’, which further leads to ‘co-variate shift’ [29]. Therefore, it is necessary to
periodically retrain the model that is implemented in dynamic environments. We explore how to
implement such a scheme for resource-constrained devices in Section 4.4.

3 EXPERIMENTS
3.1 Objects and Environment
In order to obtain a large quantity of data in which our collision prediction and warning device
experiences actual collisions with obstructions, without having to subject a person to carry the
device and experience the same collisions, in this paper we implement the following setup. We use
a robotic motion platform as our moving node for our experiments that is comprised of an iRobot
Roomba, which is controlled by attached Raspberry Pi-3 module as shown in Fig. 3b. The node
moves in a laboratory environment as shown in Fig. 3a which has other stationary obstacles. The
OptiTrack motion capture system [50] tracks and records the ground truth position co-ordinates of
all the objects that are tagged with reflective markers. An 3 m ×3 m area is barricaded with PVC
pipes in order to confine the moving node and maximize its number of collisions with obstacles
within the observed area. Within this obstacle-rich area, randomly placed obstacles are present that
are filled with a variety of materials. In order to collect a dataset with a variety of radar reflections
for our collision prediction method, we choose three different kinds of materials (gravel, soil, and
water), as shown in Fig. 3c, 3d, 3e, and 3f, to simulate the items that are commonly encountered by
a moving objects (vehicles or humans) in the real-world. Cylindrical shaped objects are 0.5m in
height and 0.3m in diameter, where as rectangular shaped objects are 0.5 × 0.2 × 0.3m in width.
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3.2 Sensing Hardware
We use AncorTek’s SDR-KIT 2400AD2 [68], a low-power and compact software-defined radar for
FMCW-based sensing, sitting at the top deck of the prototype. The center frequency of transmitted
signal is adjustable within the 24-26 GHz frequency band. AncorTek provides drivers only for
Windows, and thus, we use a Windows laptop to receive and store the complex in-phase and
quadrature (I/Q) components of the received FMCW radar signal. For the radar’s settings, we
choose a bandwidth of 2 GHz at a center frequency 25 GHz during all our experiments. Each chirp
is of 1 ms duration with 𝑁 = 128 samples per chirp. With these settings, the range resolution and
the maximum range that can be measured are 0.075 m and 4.8 m, respectively. Also, the maximum
radial velocity that can be measured is 3 m/s. The radial velocity resolution is dependent on the
number of chirps processed together at once for one RDM [20]. Lastly, the moving node also has
a BNO055 IMU sensor [64] that collects the acceleration data during our experiments at the rate
of 60 Hz. It is noted that this low-cost IMU sensor is prone to noise and thus we use the highly
accurate OptiTrack position ground-truth coordinates for estimating the mobile node’s higher
order kinematics, such as acceleration, which is taken as the second derivative of position with
respect to time, and is used for the labelling purposes. All the data files are provided [60]. It should
be noted that the size of the radar sensor used for our experiments is 79 × 56 × 13 mm, which is
comparable to the size of a commercially available collision warning radar systems. However, in
applications such as smart wearables and smart devices, the size of sensing hardware is encouraged
to be miniaturized, for example, as accomplished through Google Soli’s 12 × 12 mm radar chip [41].

3.3 Motion and Collisions
We conduct a series of experiments with one mobile node moving in a cluttered environment with
eight obstacles that are stationary. The maximum velocity that can be reached by the moving node is
0.5m/s. The moving node is made to travel in two kinds of trajectories, straight and curved. For the
straight trajectory, both the wheels of the moving node are programmed to maintain one constant
speed (0.5 m/s), and thus, the node moves in a straight line motion. For the curved trajectory, one
wheel of the moving node rotates slower than the other, creating a curvature in the trajectory,
and mimicking a curved line motion. Several collisions happen between the mobile node and the
obstacles during both styles of these trajectories as given in Table 1. When a collision happens, the
moving node comes to a complete stop, takes a turn by a random angle, and then starts moving
again at the same speed and in the same style of programmed trajectory as before the collision.
Lastly, we do not consider the PVC pipes as ‘obstacles’ since they are used only to keep the robots
inside the experimental area, and thus, all the collisions and the corresponding RDMs between the
moving node and the PVC pipes are not included in the final dataset.

3.4 Data Characteristics
We run 10 experiments, each one either with curved and straight trajectories and each experiment
is of 10 minutes duration. The duration of measurements, and thereby size of the dataset affects the
convergence time and generalization performance of the model; however, the amount of dataset
recorded, and stored or transferred is dependent on available resources and requirements of the
system. The maximum duration possible to continuously record the IQ samples through AncorTek
GUI is 10 minutes. Each experiment of 10 minutes thus creates one dataset that are shown in Table
1. We process 𝑀 = 200 chirps together to make one RDM, thus for our experiments, one RDM
comprises of 200 ms duration of complex-valued radar samples. Moving the RDM window every
50 ms, one 10-minute experiment generates 1.2 × 104 RDMs. The values for𝑀 and sliding window
size are adjustable as suited by the system’s requirements, such as desired velocity resolution
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(a) The lab setup with obstacles, mov-
ing node, and PVC pipes as boundary.

(b) The moving node with a FMCW
radar and a Windows laptop to
run the radar GUI, attached with
Raspberry-Pi to control the trajecto-
ries and collect measurements from
the IMU sensor.

(c) The obstacle filled
with pebbles

(d) The obstacle filled
with soil

(e) The obstacle filled
with water, type-I

(f) The obstacle filled
with water, type-II

Fig. 3. Experiment setup: (a) images from the laboratory environment showing (c), (d), (e), (f) the various
types of obstacles of different shapes and material, and (b) the moving node having the sensing hardware.

Exp.# Motion type Number of Collisions Number of Valid RDMs
1 Straight (S1) 35 5781
2 Straight (S2) 41 6693
3 Straight (S3) 36 5810
4 Straight (S4) 30 4050
5 Straight (S5) 31 4103
6 Curved (C1) 36 6536
7 Curved (C2) 45 7213
8 Curved (C3) 53 6723
9 Curved (C4) 40 6692
10 Curved (C5) 31 6790

Table 1. Details of the experiments conducted

and available computational capabilities to process and store RDMs, as is further investigated in
Section 4.2 and Section 4.4. We drop all the collisions with PVC pipes and their corresponding
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RDMs, as described above, thus obtaining 6× 103 RDMs per experiment on average. On average, 32
collisions are encountered during one experiment. With the labeling scheme described in Section
2.4 and taking 𝛿𝑡 = 400 ms, we obtain on average 340 RDMs per experiment that can be labelled
as ‘impending collision’, while rest of the RDMs are labelled as ‘no impending collision’. Since
only 3% of the RDMs can be labelled as ‘impending collision’, this dataset is highly imbalanced. As
explained in Section 2.5, we deal with this issue with the help of Equation 2 by assigning weights
to each class, as given in Table 2.

class 𝑗 Number of samples (𝑛𝐶 𝑗
) class weight𝑤 𝑗

collision 340 8.5015
non-Collision 5441 0.5312

Table 2. Weights for Imbalanced classes in Experiment S1

3.5 Radar Sensing for Traditional CWS
Environments where collisions are likely to happen are characterized by compact spaces with
numerous and a variety of objects. Radar systems operating in such environments suffer from
additional reflection and scattering from objects which do not cause collisions. For example,
scattering from the ground contributes to reflections received at the radar, but in many applications,
the node is not going to collide with the ground. Another source of unwanted reflections is the
physical object to which the radar is attached, which, for example, in the smart helmet case includes
the person themselves.

Overall, we refer ‘clutter’ as the received radar reflection that are due to any objects within the
environment with which the moving node can not possibly collide. Typically these reflections
make the largest contribution to the reflections received by the radar and hence, the visibility of the
relevant targets in the radar images with which collisions risk must be addressed, get suppressed.
Therefore, traditional radar-based CWS systems need to filter out unwanted reflections due to
clutter before obtaining range and velocity information.
Classical principal component analysis (PCA) has been extensively used in image and video

processing applications as a statistical tool to seek the best low-dimensional approximation of the
high-dimensional data. We apply an advanced version of PCA as a model-based filtering method in
order to remove reflections that are due to the clutter and extract the reflections that are due to the
object from the RDMs.

The data can be constituted as a superimposition of two components: 1) L, which is the low-rank
matrix and 2) S, which is a matrix that can be sparse or not. This decomposition can be obtained by
robust principal component analysis (RPCA) solved via principal component pursuit (PCP) [5]. Due
to the correlation between RDMs, the background and clutter are modeled by a low-rank subspace
that can gradually change over time, while the objects that are in relative motion with respect to
the radar constitute the correlated sparse outliers represented in the sparse matrix.

We demonstrate with the help of Fig. 4, the effect of applying RPCA-PCP to RDM images for the
three RDMs for various scenarios: (a) radar facing no object in its field of view, (b) radar facing one
stationary object in its field of view, and (c) radar facing two moving objects in its field of view. In
the left column of Fig. 4, the bright vertical reflection at zero velocity is due to clutter. This clutter
reflection is removed with the help of RPCA-PCP reconstruction of the signal, thereafter showing
only the target in the RDM, as shown in the right column of Fig. 4. The post-PCA, filtered RDMs
are then processed by the range-FFT and velocity-FFT as explained in Section 2.3 to obtain range
and radial velocity of the target. It should be mentioned that the amplitude that represent the target
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(a) RDM showing no object in view
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(b) RDM showing one stationary object
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(c) RDM showing two moving objects

Fig. 4. Visual demonstration of the effect of PCA-based clutter removal step for the baseline method: Left
column shows the RDMs with clutter reflections present and right column shows the RDMs with clutter
reflections removed via the PCA for three different scenarios: (a) RDM with no object in the view; (b) RDM
with one stationary object in the view; (c) RDM with two moving objects in the view

gets reduced after the PCA-based clutter removal step. It should also be noted that this clutter
removal step is a requirement only for the baseline method. Our proposed CNN-based solution
does not require this additional step of clutter removal since it uses the unfiltered RDMs as input
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for the training as well as for the testing stages. Lastly, since all the obstacles get represented by
the sparse S matrix, the PCA method successfully filters out the clutter subspace and retains the
subspace that is due to obstacle(s), such that reconstructed RDMs can show all and any number of
objects within RDMs, as is shown in Fig. 4c.

Baseline Collision PredictionMethod. In parametric models for traditional CWS, the time-to-collision
(TTC) method is one of the most common methods [25]. For our experiments, we implement the
TTC-based baseline method which predicts an impending collision if the measured TTC obtained
for every RDM is less than a threshold. We use Equation 4 to calculate one TTC value every RDM,
which is given by

𝑇𝑇𝐶 =
𝑑𝑟

𝑟𝑟
, (4)

where 𝑑𝑟 is the range and 𝑣𝑟 is the relative range rate between the moving node and the nearby
obstacle with which a collision is about to happen and hence, for which an alert has to be raised. An
impending collision is predicted every RDM for which the respective TTC is less than a threshold,
that is 𝛿𝑡 , as explained in Section 2.4. Using this method for our experiments, we can generate a
receiver operating curve (ROC) by computing the probability of false alarm (𝑃𝐹𝐴) and the probability
of detection (𝑃𝐷 ) for various different threshold values. Note that, if case of two objects, the collision
with the closer objects is considered more imminent, therefore, the range for the closer object is
selected for the TTC calculations. It should also be noted that the objects are in relative motion
with radar, therefore, the calculated range and velocities are relative.
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(a) Feature space of the RDMs from an untrained
ResNet-18 model.
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(b) Feature space of the RDMs after training the
ResNet-18 model.

Fig. 5. Demonstration of successful training of the ResNet-18 model.

4 ANALYSIS
4.1 Training Performance of Proposed Method
Our goal is to train a classifier which takes RDMs along with their corresponding labels as input for
training and predict the label for unseen RDMs. The cross entropy function specified in Section 2.2
is optimized in this process of training the CNN. For training the ResNet-18 CNN as the classifier,
Adam [36] is used as the optimizer to update the model’s parameters. We also train the MobileNetV3-
Small model on the same training dataset and use the RMSProp optimizer [65]. We use 𝐷 as our
training dataset that has all the RDMs from 4 experiments in total: Exp. S1, Exp. S2, Exp. C1, and
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(a) Inference results for straight line motion experiment S3 for the
moving node near Object-2.
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(b) Inference results for curved line motion experiment C3 for the
moving node near Object-3.

Fig. 6. Visual representation of our collision prediction model on straight and curved style of trajectories.

Exp. C2. The learning rate for the both the models is set to be 5 × 10−4 and both of the models
converge in 30 epochs.
In order to demonstrate that the features space of the RDM dataset is successfully learned by

ResNet-18, to be able to distinguish RDMs into two classes based on the dynamically changing distri-
bution of features, we create a visualization of the features space as follows: Each RDM from training
dataset𝐷 is fed to the ‘untrained’ ResNet-18, creating a 512-dimensional features space of each RDM
in the fully connected layer before the final classification. We then use the t-distributed stochastic
neighbor embedding (t-SNE), a popular dimensionality reduction technique, commonly used for data
visualization for visualizing high-dimensional features in lower-dimensional space [69]. The param-
eters for creating t-SNE embeddings using the sklearn library are kept as learning_rate=auto
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and init=random. The obtained 2-dimensional t-SNE embedding of the 512-dimensional features
space from an untrained ResNet-18 model are shown in Fig. 5a. We see that the untrained ResNet-18
model can not separate the features space of the RDMs into the two desired classes. Now similarly
for the ‘trained’ model, we obtain the 2-dimensional t-SNE embedding of the 512-dimensional
features space, as shown in Fig. 5a. We see that the trained ResNet-18 model is now able to linearly
separate and cluster the RDMs in the combined dataset into collision and non-collision classes,
indicating a successful learning of the features space.

4.2 Inference Performance of Proposed Method
For the inference performance of the trained model on any unseen data, we first provide a visual
intuition into the collision prediction system with the help of Fig. 6.
In the two sub-figures, the surroundings of two different obstacles named ‘Object-2’ in Fig. 6a

and ‘Object-3’ in Fig. 6b are shown, along with the straight and curved trajectories traversed by
the moving node in the unseen data from Exp. S3 and Exp. C3, respectively. The blue arrow shows
the direction of motion which leads to collision incidents between the stationary obstacles and
the moving node. The location of the moving node at the time one RDM gets measured is shown
by one dot (·). During the inference stage, an RDM is fed to the trained model and a prediction
about the ‘impending collision’ is made. The steps for which ‘no impending collision’ is predicted
are as represented by blue (·) dots, and the steps for which ‘impending collision’ is predicted
are represented by orange (×) cross. The goal of Fig. 6b is to provide a visual representation
of the inference performance made by our trained model, which includes correct and incorrect
classifications for both of the classes.
We combine the datasets from Exp. S3 to S5 and Exp. C3 to C5 to use as the test dataset 𝑇 , that

has the RDMs that are not seen by the trained models. For this test dataset 𝑇 , predictions made
by the two trained models (ResNet-18 and MobileNetV3) are collected and compared with the
ground truth for collisions according to the IMU’s deceleration-based labels. We also investigate the
performance of the traditional supervised learning methods such logistic regression (LR), k-nearest
neighbors (k-NN), and support vector machine (SVM) using the same datasets 𝐷 and 𝑇 for training
and testing, respectively. Fig. 7 shows the receiver operating characteristic (ROC) plot for the all
the five investigated learning-based classification models as well as the baseline model. The y-axis
is probability of detection 𝑃𝐷 ( or recall 𝑅 as described in Section 2.5) which measures the fraction
of RDMs that are inferred as ‘collision’ over all the RDMs that were truly labelled as ‘collision’
during the 𝛿𝑡 window from moments of collisions, as was done in the labelling scheme of Section
2.4. The x-axis represents the probability of false alarm, 𝑃𝐹𝐴, which measures the fraction of RDMs
inferred as ‘collision’ over all the RDMs that were truly labelled as ‘non-collision’. The ROC plot
shows that ResNet-18 has the highest area under the curve (AUC) with 0.98, outperforming all
the other classification methods and thereby, being our investigation’s suggested classifier for the
collision prediction problem. The reported F1-Score is 0.91. The MobileNetV3 gives the second best
AUC (0.88). The traditional supervised learning methods have AUC of 0.78 for SVM, 0.78 for kNN,
and 0.74 for LR, while the baseline method of combining PCA-based filtering with the TTC model
has an AUC of 0.6.
We further investigate the nature of predictions made by ResNet-18 on the test dataset 𝑇 , by

exploring the prediction accuracy as a function of the time to collision. As seen in Fig. 8, all the false
alarms raised by the ResNet-18 classifier are more frequent near the time of the actual collision.
This indicates that most of the false alarms (false positives) are close to the time of the threshold
of 𝛿𝑡 . That is to say that the false alarms are less likely to occur when the moving node is further
away from objects on the trajectory. Additionally, it is reported that the probability of detection is
the nearly consistent when the time of collision is less than the threshold of 𝛿𝑡 , indicating that the
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Fig. 7. Performance comparison in the form of probability of detection versus probability of false alarm for
various models for the combined dataset 𝐷
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Fig. 8. Probability of detection and false alarm as a function of time to next collision.

classifier is able to detect the impending collisions at the specific threshold of 𝛿𝑡 as designed for
our experiments.
We also investigate the effect of the value of 𝑀 , that is the number of chirps used to make

each RDM on the predictions accuracy of ResNet-18. For this, the radar and IMU measurements
from experiments in dataset 𝐷 and 𝑇 are processed for varying𝑀 values. The frequency of RDM
generation is stays the same, that is, the RDM window moves by 50 ms at a time, thereby keeping
the dataset size the same for comparison between models processing different RDM window sizes.
All the other parameters of measurements 𝑠 , 𝐵, 𝑇𝑐 , and 𝑁 , also stay the same, thus, the direct effect
of varying the𝑀 is in getting a varying velocity resolution information in RDMs. A larger value of
𝑀 results in more chirps getting combined to make a RDM, which increases to the processing and
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computational cost. For predicting a collision, this implies having a RDM that has chirps of a longer
time period before the collision. We report that the AUC score increases with the value of M, as
seen in Fig. 9, thereby indicating that having more chirps, which provides more past data and finer
velocity information in RDMs, leads to higher learning and decision making performance at the
cost of additional computational cost. However, there is an optimal value for M, beyond which the
performance degrades or plateaus as the longer duration of RDMs, the older the chirps are in the
RDMs. It can be inferred that the accuracy of predictions about future decreases as the age of the
data increases because the outdated information can become irrelevant to the immediate future.
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Fig. 9. Effect of various values of M on the inference performance. The ResNet-18 model is trained on RDMs
of Dataset 𝐷 with different window sizes. We see that the chosen value of 𝑀 = 200 for our experiments
provided the best AUC performance.

Lastly, we also report the effect of the materials of the obstacles on ResNet-18 model’s prediction
capabilities. The radar reflections vary with the material of the obstacle but our collision prediction
model performed with a 𝑃𝐷 of 0.95 or higher, regardless of the material composition of the obstacle
as shown in Fig. 10. For the test datset 𝑇 , we conduct an one-way ANOVA test. With the null
hypothesis being that the materials of the object do not affect the probability of detection of our
model and the significance level or Type-I error of 0.01, we report a p-value of 0.0254. Thereby,
we accept the null hypothesis, indicating that our model’s performance does not vary with the
material of the encountered obstacles.

4.3 Online Learning Performance
Following the retraining strategy in Section 2.6, the ResNet-18 classifier is investigated in its
retraining performance on the previously unseen data. First, a default model is obtained by training
a ResNet-18 classifier on one of the straight-trajectory datasets Exp. S1. In order to emulate data
drift, a new, unseen dataset from one of the curved-trajectory experiments Exp. C1 is used to obtain
the performance of the default model. As presented in Fig. 11, the default model’s classification
performance on the new, unseen dataset gives an AUC value of 0.69. Next, this curved trajectory
dataset is considered as the recent history and 80 : 20 train-test split of this recent history is then
used as our training set to retrain the default model. The retrained model generates an AUC of
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Fig. 10. Impact of obstacle material on F1 score

0.95 on the test set if the full training set is used. It should be noted that large datasets require long
training time. Therefore, we apply the uncertainty-sampling technique for selecting uncertainty-
based samples from the training set for retraining. We present results for various sample sizes
selected for retraining, for example, using top 10% of samples from the full training set that showed
highest uncertainty to form as a subset of training set for retraining generates an AUC of 0.83.
Similarly, using top 20% and 40% of samples with highest uncertainty generates AUC of 0.884 and
0.885, respectively. We report that the AUCs obtained by retraining on the data subsets of various
sizes of the recent history are higher than the AUC from the default model that was not retrained.
Furthermore, using uncertainty-sampling enables low latency and data requirements for retraining
and provides a better performance than a static, default model.

0.0 0.2 0.4 0.6 0.8 1.0
Uncertainity Sampling Ratio

0.0

0.2

0.4

0.6

0.8

1.0

RO
C-
AU

C-
Sc

or
e

Incremental Resnet
Incremental LR
Incremental SVM

Fig. 11. Retraining performance of ResNet-18 with two additional incrementally learning models for various
sizes based on uncertainty sampling.
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Online learning with traditional machine learning models. We also compare the performance of our
method with the traditional machine learning methods that incrementally update their parameters
as new data is collected. Working in mini-batches of the new data, the model’s trained parameters
from the previous learning are not cleared, but are updated with respect to the new data provided,
which is conceptually equivalent to training a model from scratch on a combined dataset. For
our binary classification problem statement, we use two incremental learning estimators, a linear
support vector machine and logistic regression. Additionally, in order to build a similar architecture
to our method for results comparison, we apply the uncertainty sampling principle on these
estimators as well. Each of these estimators are given a varying percentage of most uncertain
samples of the new data and their model parameters are updated. The performance of our method
in comparison with incrementally trained SVM and LR are also presented in Fig. 11. We report
that the performance converges at 0.5 of the most uncertain samples from recent history data for
incrementally retraining the models. It which shows AUC scores are converge to their optimal
after that using only up to half the size of new dataset as training, which will help in reducing
the computational load and training time for the models. We report that while traditional CWS
methods rely on noise removal techniques to remove unwanted artifacts of motion, our model
operates in presence of such artifacts within the RDMs and provides a higher performance metric
than the traditional methods. Moreover, since our model is not working with hand crafted features,
it selects the appropriate features that continually changing as new data arrives, thereby being
robust to data-drift.

4.4 System Design and Limitations
This section discusses how to our system for real-time operation in a resource constrained wearable
device.

There are multiple steps in the processing pipeline of the proposed system. First, a base model is
trained using prior data collected beforehand. This training is presumably performed in the cloud
using a cloud-offloading approach, similar to [54]. Thereafter,

(1) A radar sensor collects a complex-valued signal data vector.
(2) An RDM is generated using a 2D-FFT. An FFT (including a 2D-FFT) is a common operation

performed by embedded devices.
(3) The RDM is input to the CNN-based model, performed locally on the embedded processor, to

classify the measurement;
(4) Later, when wireless communications are available, the device uploads recently collected

and labelled RDMs to the cloud for retraining of the model, and downloading of the new
model parameters. To be clear, this communication is not expected to happen in real-time,
for example, during a sports game. Instead, the data upload and subsequent model parameter
download might occur after the end of a game.

We have used an Intel-Xeon E52666 (CPU) for the processing of radar signals, but this step can be
performed on any embedded microprocessor in real-time. For example, in common smart wearables,
a 1.6 GHz Quad-A7 Snapdragon is the system-on-chip (SoC), which is reported to generate every
second a total of 1200 RDMs that are of similar configuration as our experiments. This corresponds
to a latency of 0.8 milliseconds per RDM [41].

To run the deep-learning pipeline on resource-constrained smart devices, several libraries provide
run-time optimizations to accelerate the inference performance of models [53]. The overall system
design for smart wearables can benefit from exploring the options in terms of available SoCs and
their performance [75]. In terms of computational cost, advanced architectures of CNNs, such as

ACM Trans. Internet Things, Vol. 1, No. 1, Article . Publication date: August 2023.



Online learning for dynamic impending collision prediction using FMCW radar 21

[15], can provide alternatives, however, a comparison to such recent and advanced architectures in
terms of accuracy is beyond the scope of this study.
In terms of communication, smart wearables are known to support NFC, WiFi 802.11ac, and

Bluetooth LE and can communicate with any a local device with powerful GPUs and CPUs. The
number of wearables that can directly connect with the cloud are increasing as the demand grows
[52]. Apart from the communication delay of computational off-loading, the overall processing
time for one inference is primarily composed of on-device model’s inference latency, which is
dependent on the model of choice, deep learning libraries, and the hardware.
As an example of the relative inference latencies, we compare the two CNN architectures’

inference latencies for one RDM on Intel-Xeon E52666 in Table 3. It can be seen that MobileNetV3
achieves a 16 times reduction in the model latency compared to the widely popular ResNet-50 and
6 times reduction compared to our work’s proposed model of ResNet-18. The CNN architectures
also differ in their number of trainable parameters. MobileNet architecture has 10 times lower
number of parameters to train in comparison to the ResNet architecture. Therefore, we suggest
MobileNetV3 for solutions where swifter predictions are required to be made while having better
performance than traditional supervised learning methods. Lastly, for implementing our design
on smart devices, MobileNet architecture has shown similar inference performance on SoCs such
as Snapdragon 430 to 888, thereby making our suggested architecture a suitable option for smart
devices and mobile applications [75].

Model Inference time (sec) # Parameters (×106)
MobileNetV3-Small 0.0165 2.54
MobileNetV2 0.0608 3.50
ResNet50 0.2545 25.56
ResNet18 0.1032 11.69

Table 3. A comparison of inference latencies of the various CNN architectures in processing one RDM for
real-time applications.

The above suggestions are in accordance with the current challenges faced by smart devices, in
that the majority of them are resource-constrained in terms of computational and communication
capabilities. The system design for a smart wearable such as smart helmet, thus requires innovative
schemes to implement our method’s pipeline and suggestions to capitalize on available resources.

5 RELATEDWORK
5.1 Smart Helmets and Collision Prediction
Two of the most relevant fields that deploy preventative measures similar to our problem statement
of predicting and avoiding collisions are of smart helmets and vehicular CWS. Smart helmets have
gained substantial interest from the research community in the past decade. The goal of smart
helmets can be diverse, most commonly used for collision prevention, by either deactivating the
paired vehicle if helmets are not in the vicinity [56] or by deciding that a collision has occurred and
call for help after the collision event [46]. They do not actively predict impending collisions before
they happen. Therefore, there is scope for incorporating the smart helmets with advanced sensors
and algorithms to instead predict the collisions before they happen, which is crucial in altering the
wearer of these helmets to prepare themselves upon receiving an alert according to the prediction.
Efforts for a camera-based collision prediction algorithm is presented in [8], where future positions
are ‘extruded’ and the decision about a future collision is made. Another camera-based helmet for
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avoiding rear end collisions in real-time is presented in [58]. Most of the work in smart helmets
utilize cameras or a combination of vibration sensors. To best of our knowledge, solely using
radar-based smart helmets for predicting collisions before they happen is novel.

5.2 Vehicular CWS and Radars
Vehicular CWS, on the other hand, are well researched and are adapted as a necessity for the
automotive industry. The automotive industry commonly utilizes the 24 GHz and 77 GHz frequency
bands in radar systems [22]. Both frequency bands have their advantages and limitations. The choice
of sensor for the vehicular CWS is most commonly a combination of camera and radar sensors.
Radar performance may be degraded performance due to clutter and noise. In order to minimize
the clutter reflections received and noise captured in these radar sensors, filtering techniques
such as [6] are actively being researched. However, these filtering methods are not dynamic and
need to be updated frequently whenever the environment in which the radars operate changes.
Instead, deep learning can be utilized to work with measurements from radars that operating in
cluttered and dynamic environments. Multiple published papers that are using deep learning on
radar measurements have resulted in successful learning-based solutions in the field of motion and
object detection, classification [35], localization and tracking [77], [42], [3], [43], and human health
and activity monitoring [14], [55].

5.3 Vehicular CWS and Deep Learning
Although the progress in deep learning have found much application in radar-based sensing, the
learning-based algorithms for CWS are still being developed. In [62] and [19], the authors present
a non-learning method in the former and a CNN-based classifier in the latter to use a combination
of camera and millimeter-wave radar and predict collisions. Instead of using sensing hardware
like radars, another option is to provide input information is vehicle-to-vehicle (V2V) or vehicle-
to-infrastructure (V2I) communication streams for obtaining range and velocity information for
collision predictions. Based on V2I communication, in [39] a collision warning algorithm using
a multi-layer perceptron (MLP) neural network called MCWA is presented and reported to have
higher performance compared to non-learning methods. A more advanced architecture using VGG-
CNN, called RCPM, for a real-time collision detection using trajectory information from videos is
presented in [71]. These attempts pave the way for exploring faster machine learning architectures
for making swifter predictions for safety critical applications such as collision warning. In our wor,
we propose a ResNet-18 based collision prediction method that only uses entirely independent
and ego-centric measurements obtained from inexpensive and lightweight FMCW radar and IMU
sensors. Thus, our method is an infrastructure-free, self-sufficient solution that operates in cluttered
environment and is faster and more accurate than traditional parametric and other learning-based
methods.

5.4 Online Learning and Radars
Finally,learning-based collision prediction models should use self-labelled measurements from
recent history and continue to learn. Therefore, a related field to explore is that of online learning,
which has seen significant research in building algorithms that continuously and efficiently learn
new information while retaining previously learned information. Most recently, rehearsal-based
approaches for incremental learning have been implemented in which a model maintains a subset
of previous examples that are mixed with new samples to update the model [34], [57], [23]. More
specifically for radars, in order to operate in changing environmental conditions, cognitive or
fully adaptive radars (FAR) can provide a feedback and optimization mechanism for improved
system performance through the subsequent measurements [9], [24]. Another approach is of drift
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detection with incremental learning, where modification to the learning model occurs only when
a change is detected in the environment distribution from which data are drawn, as is presented
through a simulation study in [1]. In [74], a SVM-based method of working with hand-crafted
features of the environment is presented that extends its underlying model by adjusting its hidden
layer and retraining on selected incorrect samples while retaining previously learned information.
Incremental learning, thus, is further explored in our work as the framework for our system to
continuously learn with the changing environment using samples with highest uncertainties.

6 LIMITATIONS AND FUTUREWORK
6.1 Limitations of the Experiments Conducted
First, we note that the experiments in our work could be extended. For example, our experiments
utilize only single-receiver radar measurements. In contrast, the use of multi-antenna radar systems
that can beamform to improve the strength of the desired signal by combining signals from multiple
antennas, adds the ability to measure angle and reduces the impact of interference. However, it
adds to the processing and computational costs and has not been explored in this work. Also, our
experiments use 24 GHz radar, and future experiments could explore performance in the 60 and 77
GHz bands which allow higher bandwidth and thus greater resolution. Finally, the speed of our
moving prototype node is not representative of the target application of our system, such as sports
players. However, radars are capable of capturing different speeds, according to the requirements
by the application and radar operation settings, and extended experiments can include different
speeds into the measurements.

6.2 Limitations of the Proposed Method
A collision prediction system for a particular application must have classification error rates such
that the application needs are met. The proposed system, as presented in this paper, may not meet
the needs of all applications. Future research is critical to advance collision prediction methods to
meet the real-world usability standards in particular applications.

6.3 Future Work
Recurrent neural networks (RNNs) utilize the sequential nature of the data by using a time-series of
multiple data points to make one inference. In our system, the data points are RDMs, and they are
indeed sequential in time, being produced one after the previous. Using multiple sequential RDMs
as one input to a RNN-based model may have value to explore in order to get improved performance
compared to a CNN-based model. As a future direction to explore, other deep-learning architectures
such as RNNs and recent modifications in CNNs that have shown to offer a lower complexity and
inference latency, can be studied to present a comparative analysis of using raw radar data in
predicting collisions. Sensor fusion with other modalities, such as video and lidar, can also be used
to provide complementary information that could dramatically improve the classification rates
of collision prediction. These methods may be beneficial in improving the increasing a machine
learning model’s inference accuracy.

7 CONCLUSIONS
In this paper, we present a deep learning-based methodology for predicting impending collisions us-
ing radar and inertial sensing. Approaching the problem as a binary classification problem, we study
the CNN architectures of ResNet and MobileNet to optimize the cross-entropy loss function using
labelled range-Doppler matrices as input and collision prediction labels for impending collisions
as the outcome. We report ResNet-18 provided an F1 score of 0.91 and outperformed traditional
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supervised learning methods. We also presented a retraining framework for incorporating online
learning capabilities to the ResNet-18 CNN architecture in order to make it adaptable to the changes
in the input data distribution due to the dynamic environmental conditions such as changes in
the style of motion and object materials. Lastly, the system is designed to automate the labelling
process by using its inertial sensor to provide real-time acceleration measurements which are used
to label the present radar measurements for the continuous, online learning scheme presented in
this study.
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