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Abstract—Software-defined radios (SDRs) are often used in
the experimental evaluation of next-generation wireless technolo-
gies. While crowd-sourced spectrum monitoring is an important
component of future spectrum-agile technologies, there is no
clear way to test it in the real world, i.e., with hundreds of
users each carrying an SDR while uploading data to a cloud-
based controller. Current fully functional SDRs are bulky, with
components connected via wires, and last at most hours on a
single battery charge. To address the needs of such experiments,
we design and develop a compact, portable, untethered, and
inexpensive SDR we call Sitara. Our SDR interfaces with a
mobile device over Bluetooth 5 and can function standalone or
as a client to a central command and control server. The Sitara
offers true portability: it operates up to one week on battery
power, requires no external wired connections and occupies a
footprint smaller than a credit card. It transmits and receives
common waveforms, uploads IQ samples or processed receiver
data through a mobile device to a server for remote processing
and performs spectrum sensing functions. Multiple Sitaras form a
distributed system capable of conducting experiments in wireless
networking and communication in addition to RF monitoring
and sensing activities. In this paper, we describe our design,
evaluate our solution, present experimental results from multi-
sensor deployments and discuss the value of this system in future
experimentation.

Index Terms—Mobile Systems, Spectrum Monitoring, Wireless
Networks, Crowd-sourcing, Software-Defined Radio

I. INTRODUCTION

Future mobile wireless advancements will continue a trend
of increasing densification, distribution and coordination, and
spectrum-agile operation [14], [15], [17]. The performance
of these new technologies depends not only on the mo-
bility of individual users with respect to base stations, but
also users’ mobility with respect to each other. Ideally, to
quantify performance experimentally, one would run a large-
scale distributed wireless experiment with tens or hundreds of
software-defined radios (SDR) programmed to deploy/test a
new technology, while individual volunteers each carry these
SDRs with them during their normal daily activities. Such
an experiment would allow technologies to be tested with
users’ real-world mobilities, including temporal, spatial, and
person-to-person correlations, rather than in artificial testbed
or simulation environments that implicitly or explicitly assume
independence and stationarity.

For researchers to be able to run such experiments, the SDR
must be truly portable, so that a volunteer participant is not
burdened by the carrying of the device, and in fact does not

ordinarily notice it. Furthermore, the hardware must be low
cost to enable measurements with hundreds of volunteers. We
define portable to mean capable of operating for extended
periods of time without an external power supply, small
enough to carry without encumbering the user — small enough
to easily fit into a pocket — and not tethered to wires, cables,
or external connectors. Its energy consumption must allow it
to last as long as most smartphones so that volunteers can
charge it on the same schedule as their mobile device. In terms
of cost, a researcher should be able to purchase a set of 100
on a standard grant, which would translate to around US $50
or less per device.

Unfortunately, no existing SDR meets the requirements of
performing such experiments. Recent products include devices
such as the Kickstarter-funded “portable SDR” (PSDR), RTL-
SDR, HackRF, LimeSDR and Ettus USRP radios. While each
of these possess useful capabilities, all fall short in one area or
another for large scale mobile experiments. The most suitable
among these would be the Ettus USRP E312, a battery-
powered portable SDR [7]. The E312, however, is far too large
to fit into a pocket and it must be tethered; it would still require
a cable connection to a mobile device or laptop to provide
a control channel. Additionally, the steep price of the E312
would present a practical limit to large scale distributed ex-
periments. The RTL-SDR is low cost, but requires an external
processor, to which it must be connected to by USB cable and,
most importantly, has no transmit capability. Most true SDRs,
capable of digital processing of RF samples and RX/TX, cost
at least US $100 in the most basic form and quickly reach 10
times that cost for more sophisticated offerings. Such SDRs
quickly become cost-prohibitive for large-scale experiments,
and present a significant limitation shared by others [2].

Current mobile phones, while packed with cellular, Wi-fi
and Bluetooth radios, do not always provide the flexibility to
make arbitrary changes across layers which researchers want
to explore, despite their suitability for some specific applica-
tions in localization and sensing [3], [18], [19]. Differences
in chipsets, firmware implementation, protocols and carrier-
imposed restrictions preclude uniform or arbitrary access and
control of the underlying hardware. Even with unrestricted
access to the hardware, such operation could disrupt data
services and inconvenience the volunteer — something we
wish to avoid.



A. A Novel Software-Defined Radio

Our contribution is a novel open-source device and cloud
framework aimed at enabling large-scale experimental research
in mobile dynamic spectrum access, propagation modeling,
distributed and coordinated reception, and localization. Our
device, called Sitara, is a truly portable software-defined
radio. It is especially suited for distributed, crowd-sourced
experiments. It is designed to have a battery life of up to
a week on a single charge, to be smaller than a credit card,
and to cost less than existing fully-featured SDRs. Our Sitara
is convenient for volunteers to carry and is accessible to a
broad set of researchers. We anticipate this to be particularly
useful for scenarios in which simultaneous, near real-time,
geographically distributed narrow-band RF measurements are
desired. We will demonstrate how the Sitara can become
a valuable tool, quickly amassing measurement inputs for
models and providing insights to inform decisions for wireless
research.

B. Achieving True Portability

The aim of achieving a compact, cordless, energy efficient
device constrains key design decisions. The inconvenience
of frequent charging and limited space for batteries make
the power requirements of field-programmable gate arrays
(FPGAs) commonly used in other SDR solutions unfeasible.
For a device to be practical for crowd-sourcing it must also
be convenient for volunteers to carry, which means we cannot
connect it via cable to their smartphone, and little to no
interaction should be required from the volunteer. With the
recent availability of Bluetooth 5 devices and the ubiquity of
smartphones, we arrive at the solution presented here: a low
power transceiver paired with a Bluetooth interface. By pairing
with the volunteer’s phone, we can piggyback on the phone’s
WiFi or cellular connection to communicate with a remote
server, as well as its location service.

But how can we avoid the large cost and size of most
fully-functional SDRs? We apply a lesson from the RTL-
SDR, which re-purposed a mass-produced digital video re-
ceiver (the RTL2832U) for its ability to output complex-
baseband (IQ) samples. We use the Texas Instruments (TI)
CC1200 transceiver which, although not designed as an SDR
transceiver, has an IQ sample feature as well as transmit
capability. This transceiver supports operation below 1 GHz.
The experiments we perform in this paper are in the 902-928
MHz ISM band. Our firmware limits transmission to one of
several ISM bands below 1 GHz. The Sitara complements the
CC1200 with a Nordic Semiconductor nRF52840 system on
chip (SoC) and supporting circuitry. This SoC contains a a
processor and Bluetooth stack used for processing commands
and communicating with a mobile device/gateway. The Sitara
supports reading from and writing to arbitrary registers on
the CC1200 radio, tuning radio frequency, measuring RSSI,
continuously capturing IQ samples, sample capture on carrier-
sense, frequency phase lock, and transmission and reception
of messages using various modulations.

Fig. 1: Sitara PCB with antenna and rechargable battery
housed in an ABS plastic enclosure

C. Balancing Power and Throughput

For any mobile device, the power budget is always an
area of concern. For our application, while targeting low-
cost, lower power components, we introduce the challenge
of maintaining high sample throughput on hardware that was
originally designed for intermittent, bursty operation; contin-
uously operating the µC alone would deplete our initially
specified battery in a matter of hours. We address this problem
by designing an architecture that maximizes efficiency by
exploiting hardware peripherals to maintain a high data rate
while minimizing µC activity. To prove useful as an SDR,
we must maintain a uniform sampling rate for IQ data. This
requires solving a number of problems to achieve a careful
coordination between transceiver data acquisition, sample pro-
cessing and the Bluetooth radio.

In general terms, we achieve this by minimizing processing
overhead in software and optimizing parameters for Bluetooth
transmission. Among the Bluetooth features that make this
possible are Low-Energy Data Packet Length Extension intro-
duced in Bluetooth 4.2 and the optional 2 Mb/s bit rate, LE
2M PHY, introduced in Bluetooth 5 [1]. Because the Bluetooth
stack is implemented as a “SoftDevice”, a precompiled binary
image, which runs on the single ARM core, there is inherent
contention for the µC’s resources. Any timing anomalies
occurring while servicing interrupts by the SoftDevice result
in a critical fault. Consequently, the SoftDevice must be
given interrupt priority, resulting in non-deterministic timing
for servicing other interrupts such as sample capture. Our
solution overcomes these challenges to provide continuous
sample capture over SPI and only requires µC intervention
to rotate between receive buffers. The result of our efforts is
a maximum, hardware-limited, continuous sampling rate up
to 104 kS/s across the SPI interface and Bluetooth data rates
exceeding 1Mb/s. The maximum sampling rate across the SPI
interface effectively limits our receiver bandwidth to 52 kHz
for IQ sampling.



D. Cloud-based Command and Control Server
In addition to the Sitara, we develop a mobile application

and command and control server interface allowing hundreds
of devices to operate in coordination, as shown in Fig. 2.
The server provides a convenient web-based GUI for live
monitoring and control of connected clients (Fig. 4) and pro-
cessing of historical measurement data. This allows monitoring
real-time measurements in a distributed, mobile environment
or delayed logging and upload for later analysis. Accessible
records contain RSSI measurements, IQ samples, location,
time and device ID. These capabilities enable passive crowd-
sourced measurements using remote control, or to function
as a standalone SDR, controlled wirelessly through a user’s
mobile device. This is similar to prior efforts [2], but focuses
on custom tailoring of experiments for a fine degree of control,
rather than optimizing for one specific application.

Fig. 2: Sitara backhaul system includes the Bluetooth con-
nection (blue) between the Sitara and mobile gateway, and the
WiFi or cellular connection (green) between the mobile device
and the remote cloud server.

Fig. 3: Sitara measures signals from other Sitaras or other test
devices, and uses the phone and its data connection and GPS
to log data and receive commands.

In this paper we first cover the design and implementation,
walking through solutions to some of the challenges we
encountered. We characterize the performance of the Sitara
then present experimental results from the following usage
scenarios to illustrate the utility of our SDR:

• Transmitter localization using RSSI measurements
• Crowd-sourced measurements using multiple concurrent

participants, suitable for spectrum monitoring or RF
propagation modeling

• Server-side demodulation from IQ sample captures of a
2-FSK transmission

We conclude by assessing our solution and discussing future
areas of research related to our crowd-sourced measurement
approach.

II. DESIGN AND IMPLEMENTATION

In this section, we examine some of the technical challenges
and design decisions during the development of the Sitara, be-
ginning at the hardware component level and then continuing
with the firmware development. We also briefly discuss the
software development associated with the mobile gateway and
server applications.

A. Component Choice

In order to develop a low cost, low power solution we look
at transceivers capable of RF digital sample output. After con-
sidering many options we tended toward wireless transceivers
such as the TI CC1200, Atmel RF-233, AT86RF215, Atmel
AT86RF215IQ, and Silicon Labs EFR32FG. Among these,
interface options and operational frequencies lead us to the
CC1200 which tunes to frequency bands between 137 MHz
and 950 MHz. The CC1200 is energy efficient and allows
raw IQ samples to be exported while still operating over a
wide enough frequency range to prove useful. The RF network
can be configured to match the frequency and bandwidth
of operation. In this paper, Sitara uses a 915 MHz balun,
which places the optimal operating frequency between 902
to 928 MHz. Future development could add an RF switch or
wide-band matching network to improve performance across
other bands.

The CC1200 transceiver operates using a SPI interface to
read and write data and control registers, respectively. General-
purpose IO (GPIO) connections between the CC1200 and
SoC µC allow interrupt-driven functions such as IQ sample
acquisition and RF power level triggering. We adapt the
register configurations for optimal spectrum monitoring. The
CC1200 provides 3 registers (17 bits total) of magnitude and
2 registers (10 bits total) of angle measurements from the
output of its coordinate rotation digital computer (CORDIC)
algorithm.

We choose the nRF52840 SoC because it was one of
the first available low-power Bluetooth 5 SoCs with a well-
supported SDK. Additionally, the ARM Cortex-M4 within the
SoC provides a floating point unit (FPU) which is necessary
for some SDR applications. The RF output from the nRF52840
is connected to a 2.4 GHz 3dBi SMD chip antenna. While
chip antennas are inefficient, the use case is to have a very
short Bluetooth link, for example a volunteer might carry both
devices in the same handbag, or in two different pockets.
Such short links can be reliable even with the antenna loss
as we can see from the Bluetooth throughput measurements
in section III-A. A power management IC (PMIC) regulates
voltage, charges and manages the LiPo battery connected
through the standard JST connector. Sitara contains a JLink
interface to allow programming, terminal logging and debug-
ging. The CC1200’s RF chain interfaces with an RF-tuned
circuit terminating on a µFL connector. For our experiments
and the results presented here, we use a Yageo Penta-Band
WWAN antenna, but other antennas could also be used. The
board, battery, and antenna are designed to fit within a standard
70 by 50 by 20 mm plastic case, which provides mechanical



protection while being carried by a volunteer. The battery is
recharged by the volunteer using a standard micro USB cable,
likely to be familiar to an Android phone user.

At the time of writing, the total cost for the bill of materials
(BOM) in quantities of 1000 was estimated to be $38.00 per
device. Please refer to our github repository to view the current
BOM, source code and design documents [16]. Additional
information about our system implementation can be found
in arXiv:1905.13172 [cs.NI].

B. Sitara Firmware

We develop the SoC firmware using the nRF5 SDK v13.0.0
from Nordic Semiconductor, compiled using the GNU ARM
toolchain v7.2.1. The firmware executable code resides in flash
on-board the nRF52840 SoC. The SoftDevice, a pre-compiled
protocol stack, is also stored in flash and loaded into RAM at
run-time. An event-driven API allows the firmware to interface
with the SoftDevice to access Bluetooth functions.

Once powered on, the µC initializes and configures the
external CC1200 transceiver, on-chip Bluetooth radio and
other peripherals then enters a sleep state while awaiting
commands. As we mention, minimizing power consumption is
a key design driver, so minimizing the time that components
are powered on and active is a recurring theme. This allows
us to achieve an 80% power reduction for most applications.

Most commands perform a single function then return the
µC to a sleep state. The continuous SAMPLE CAPTURE
command enters a loop in which data is acquired and sent via
the Bluetooth interface. Because continuous sample capture is
an important aspect of our design we will discuss its operation
in more detail.

Sample capture utilizes the Programmable Peripheral Inter-
connect (PPI), which permits on-chip peripherals to interact
through task-event relationships, independent of the CPU. We
configure an interrupt event associated with the magnitude-
valid output signal from the CC1200 to trigger a burst-read SPI
transaction task which reads the registers containing the sam-
ple data. The magnitude-valid signal asserts when a new IQ
sample is ready on the CC1200 and occurs at a set rate depen-
dent on the configured receiver filter bandwidth. While most
of these actions are automated using hardware peripherals, the
nRF52840 SoC, unfortunately, does not provide a method of
switching receive buffers for the SPI-DMA transaction without
µC intervention; however, the time required to service the
interrupt is approximately 22 µs. Therefore, sampling rates
with a period equal to or greater than 22 µs (45 kS/s) may be
delayed by at most 1 sample period. An additional factor that
complicates this process and limits the maximum sampling
rate over SPI is the absence of a hardware-enabled control
function which allows consecutive burst reads from multiple
registers (although this is available for repeated reads from a
single register). This negatively impacts performance in two
ways:

• Each sample read must include two command bytes for
SPI burst read which are added to the total length of the
transaction, thus increasing each transfer duration.

• During a SPI transfer, a byte is received during each clock
cycle, thus the receive buffer will always contain the two
status bytes received during the clock cycles which the
two command bytes are sent, in addition to the bytes
containing the actual data.

This results in inefficient use of memory and a receive buffer
containing status bytes interleaved with sample data requiring
extra processing steps to extract samples. Nevertheless, this
does not impact performance because the Bluetooth connec-
tion ultimately limits throughput as we note in Section III-A.

Bluetooth transfer of packets is not real-time, and due to
packet collisions and errors, MAC delays and retransmissions,
any finite buffer can experience an overflow. This is handled
by pausing capture acquisition and discarding samples while
the Bluetooth interface catches up. This is problematic for RF
sample capture because it can break continuity and introduce
timing offsets. In order to compensate for these errors, we
maintain a 16 MHz counter during acquisition which is
activated while sample capture is paused and then reports
the elapsed pause time once sample capture resumes. This
information is then also sent over Bluetooth so the end-user is
able to accurately reconstruct and preserve timing of sample
captures.

C. Crowdsourcer and Server Software

The choices of server architecture and software frame-
works were driven primarily by convenience, ease of use and
adaptability rather than resource optimization as we see for
the Sitara. The server application uses common tools and
frameworks including Python Flask and an Apache front-
end paired with Gunicorn, a Python WSGI server. The con-
trol functions are accessed from an interactive Javascript-
based GUI in a web browser. Socket.IO libraries for Python,
Javascript and Java provide low-latency, standardized event-
based communication between different the server, Web GUI
and the device gateways, respectively.

Fig. 4: Server homepage showing locations of active sensors

A remote operator issues commands from a web client
which are processed by the server and relayed to the ap-



propriate client device gateways. The web client, server, and
gateway each activate a set of event listeners which filter
relevant messages. Messages containing measurement results
in response to commands, such as RSSI and IQ data, are
stored in the server’s database. The web interface provides
a Google Maps overlay which can display real time client
location and associated measurement data as shown in Fig 4.
In addition to real-time monitoring of sensors, the web client
also provides convenient tools for filtering and displaying
subsets of measurements according to parameters such as
time, frequency, RSSI threshold and location. Some of these
capabilities will be demonstrated in section IV.

The Server application was designed to provide a high-
level abstraction for commands, leaving the implementation
details and low-level commands to the client device gateways.
For example, a server RSSI command emits a single message
containing several parameters such as frequency, bandwidth,
reporting interval and report type. The device gateway receives
this message and issues multiple commands as appropriate,
such as frequency tune and RSSI capture, over Bluetooth to
individual Sitara devices. A Sitara in turn will interpret each
of these commands and perform the appropriate functions to
accomplish this task. Combining and abstracting commands at
the top level in this way reduces latency, preserves bandwidth
and spares server resources by minimizing the number of
message exchanges for a given task. This abstraction also pro-
vides a modular approach making the sensor implementation-
agnostic to the server.

While developing this architecture, we considered imple-
menting an existing standard such as IEEE 802.22.3 Spectrum
Characterization and Occupancy Sensing (SCOS) Sensor [13],
an extension of the SigMF specification [8]. We find that
such specifications provide a level a complexity beyond our
immediate needs. Specifically, SCOS implements a restful API
requiring each sensor to host a web server; we instead use
an open Socket.IO protocol to maintain persistent connections
necessary for managing mobile devices. Notwithstanding the
differences, our implementation could be adapted to comply
with the SCOS standard as follows: Rather than implementing
a RESTful API on each sensor, a gateway could be installed
on the server which is compatible with the SCOS standard and
emulates the API for each device. As requests are received at
this server, the SCOS gateway would forward the appropriate
commands to the server application. This would provide all
the benefits of compatibility with the SCOS standard without
a system redesign.

III. EVALUATING OUR SOLUTION

We now present measurements characterizing the perfor-
mance of our system under varying conditions. A small sample
size used to obtain reasonable expectation of performance.

A. Data Throughput

Three data paths potentially limit the real-time throughput
of the Sitara system. The Bluetooth data rate, the SPI interface
from the CC1200 radio to the µC, and the on-board µC

itself. Depending on the use case, any of these could become
a bottleneck. In our application, the maximum data transfer
across the SPI bus exceeds the data rate of the Bluetooth link.

The CC1200 specifications limit the minimum SPI clock
rate to 7.7 MHz for extended register reads, which include the
registers of interest. In practice we have successfully achieved
an 8 MHz clock rate. Two common modes of operation
read from the CC1200 either three magnitude and two angle
registers (8-bits each) or only the two angle registers. The
maximum achievable sampling rates for these two modes were
64 kS/s and 104 kS/s, respectively.

The Bluetooth 5 standard defines a maximum transfer rate
of 2 Mbps [1]. By utilizing this LE 2M PHY option, packet
length extension and configuring the Bluetooth Maximum
Transmission Unit (MTU) to match the packet length, we
achieved highest throughput. Initial throughput testing using
special firmware achieved a peak effective data rate of ap-
proximately 1.3 Mbps between a Sitara device and Bluetooth
5 capable mobile phone. In typical usage scenarios we observe
an average throughput greater than 1 Mbps. This determination
results from a series of tests under varying environmental
conditions using two different mobile phones, denoted device 1
and device 2 in Fig. 5. For each of these measurements, 244KB
of data was transmitted over the Bluetooth link while the Sitara
recorded the transmit time on its system clock. The 244KB
transmission was then repeated at least 10 times for each test.
For the environmental test (Fig. 5, top) we used two controls,
the first places a mobile phone within 15 cm of the Sitara in
an environment without in-band WiFi or Bluetooth activity as
observed on a spectrum analyzer. The second control repeats
this test, but separates the paired devices by 12 meters. We
then perform additional measurements as follows: with the
participant keeping the Sitara in a pocket while holding the
phone in hand (Test 1), with the Sitara inside a backpack while
the participant holds the phone in hand (Test 2), and finally,
in a variety of different indoor and outdoor environments with
the Sitara in the participant’s pocket (Test 3). In addition to the
environmental tests, we also conduct interference tests (Fig. 5,
bottom). For these experiments, up to four interfering devices
transmit over Bluetooth at their maximum data rate while
the unit under test performs measurements. For these tests,
the paired devices are separated by one meter. The controls
consist of the same test, with no interferers (Control 1) and
four interferers (Control 2); though in the case of the latter, the
separation is reduced to 15 cm while other conditions remain
the same. Test 3 of the interference measurements notably
exhibits higher deviation than others. We speculate that this
is due to characteristics of the Bluetooth protocol at marginal
capacity or differences in hardware among devices. Further
analysis of the Bluetooth performance and characterization is
beyond this scope of this work as these tests are intended only
to approximate worst-case conditions expected in real-world
scenarios.

In our application, minimal processing was required by the
onboard µC during sample acquisition and was not found to
impact throughput, therefore no attempt was made to evaluate



Fig. 5: Measured Bluetooth 5 data rate between Sitara and two
mobile devices under varying test scenarios (top). Measured
Bluetooth 5 data rate in the presence of varying numbers of in-
terferers, where test number refers to the number of interferers
(bottom). All error bars represent standard deviations.

load or processor utilization on the Sitara. If additional signal
processing were to be carried out on the Sitara, then this may
require further investigation.

B. Power Characteristics

The Sitara’s power consumption ranges from approximately
18 mW to 180 mW depending on operational mode. Power
usage in typical scenarios is shown in Fig. 6 below. In the
Sitara idle state, the CC1200 radio is set to a low powered
state, maintaining power only to the crystal oscillator and
digital core; when no other commands are present the µC
in the nrRF52840 chip receives the wait-for-event (WFE)
command which likewise powers down nonessential modules.
The µC will periodically wake up to handle events necessary to
maintain a Bluetooth connection. During RX and TX states,
the CC1200 remains powered on along with necessary RF,
clock and interface peripherals; the µC is more heavily utilized
in these states, but no quantitative analysis was performed to
determine the duty cycle of the active versus inactive/WFE
state.

We initially tested battery life with a 3.7 V 180 mAh LIPO
battery, allowing the Sitara to operate for several hours in
any state. Repeated tests demonstrate that at full charge, the
Sitara maintains a consistent Bluetooth connection until loss
of power after 37 hours; this is consistent with the estimated
battery life based on the measured idle power consumption.
We later opted for a larger 850 mAh battery to extend battery
life up to a week with a commensurate improvement in high
duty-cycle operation. For comparison, the USRP E312 SDR
uses a 3200 mAh battery to achieve 5.5 hours at idle [6].

Fig. 6: Comparison of maximum Sitara energy consumption
across a range of operational states.

C. Timing and Synchronization

The CC1200 contains a phase-locked loop (PLL) which
allows timing recovery in hardware for available modulation
schemes. In other applications, our firmware performs a phase-
lock function to effectively tune to a signal of interest. Regular
synchronization may be necessary to maintain clock accuracy
in use cases such as Doppler, time-of-arrival, or synchronous
RF network architectures.

For system timing and timestamp information relating to
signal measurement, the Sitara maintains a system clock. The
Sitara can synchronize its clock by receiving a clock command
containing current GPS time from the mobile gateway over
Bluetooth. Multiple such clock commands are sent until the
mobile gateway observes a minimum round-trip time between
the sent time and command acknowledgement — a technique
not very different from many network time protocols. This
provides a simple method of synchronizing devices with GPS
time with an error on the order of milliseconds. In order to
achieve a more accurate synchronization, Sitara devices can
perform a triggered RSSI measurement which will upload a
timestamp associated with the trigger event to the server. From
a collection of triggered RSSI measurements on the server
for a single transmit event, relative clock offsets between
different devices can then be easily computed. If an application
requires a more accurate node synchronization, then a more
sophisticated approach would be appropriate [9], [11].

D. Server Performance

Although some performance compromises are necessary to
meet our hardware design goals for the Sitara, server-side
resources present few practical constraints as they are easily
re-configurable at run-time. By hosting our server on a cloud-
computing service, our application can quickly scale to meet
demand. As a base configuration we reserve a host with 1
vCPU and 0.5 GB of RAM. We find this adequate to display
and manage 250 simultaneous clients each reporting one RSSI
measurement per second. Additional clients reporting RSSI,
or multiple clients uploading IQ samples may require a more
capable server if the live reporting mode is desired. As our
system is expected to handle dropouts and latency associated



with mobile data links, we place no hard timing requirements
on server resources and assume best-effort.

IV. CASE STUDIES

In this section, we present experimental results demonstrat-
ing how our system is used in two different applications. We
specifically choose these applications to demonstrate the ver-
satility and key features of our system namely: the portability
of the Sitara for crowd-sourced measurement and its utility as
an SDR. We also explain how these demonstrations can extend
to much more complicated experiments.

Note that for experiments involving volunteers, to ensure
consent and handling of potentially sensitive user data is
adequately addressed, we maintain an institutionally-approved
IRB.

A. Spectrum Sensing

One of our primary design goals for the Sitara is to offer
a convenient platform for crowd-sourced spectrum sensing.
As such, we demonstrate the versatility of our system in this
capacity in real-world settings.

1) Transmitter Localization: Single Sitara: In this scenario,
we deploy one Sitara acting as a receiver which is controlled
locally using an open-source third-party mobile application:
nRF UART v2.0. The user walks around the test site, issues
commands from the mobile gateway to capture RSSI mea-
surements which are later used to estimate the location of a
“rogue” transmitter.

Multiple RSSI measurements are taken to estimate the
location of a receiver. The measurement points are chosen
arbitrarily along pedestrian-accessible paths. The measurement
points used for localization are indicated by green circles
overlaid onto the site map in Fig. 7 (Left). The radius of the
green circles are proportional to the measured RSSI value at
each of these points. The red circle denotes the transmitter
location. The test site covers a roughly 28,000 m2 area, with
the farthest discernible measurement captured at a distance
approximately 120 m from the transmitter.

Fig. 7: (left) Outdoor test area with transmitter location (•)
and measurement locations (•), with radius proportional to the
measured RSSI value. (right) Transmitter location estimation
map and true location (×).

Once the data is captured, the coordinates of the measure-
ment points are associated with individual pixels of a captured
overhead image of the test site retrieved from Google Maps.
To make localization more challenging, we choose to discard
the highest three RSSI measurements. The remaining points
are used to produce Fig. 7 (left), then as inputs to a Matlab
interpolant object from which Fig. 7 (right) is generated. In
this case, linear interpolation is used. We can see that this small
data set performs reasonably well in locating the transmitter.
The true location is approximately 9 m away from the best
estimate as indicated by the peak of the yellow region in
the figure. Clearly with more measurements, either from an
increased sampling rate or multiple simultaneous devices, we
would see this accuracy improve.

Here, we deploy a single Sitara with a local, active par-
ticipant to capture RSSI measurements at different points.
Local Sitara operation may be convenient for directed ex-
periments which may not accommodate multiple passive
users in a crowd-sourced scenario. A more typical use case
will involve multiple participants–active or passive–and rely
on automated, server-initiated measurement commands. We
demonstrate these capabilities next.

2) Crowd-sourcing: Multiple Sitaras: We deploy twelve
Sitaras among passive participants in a series of experiments.
By passive we mean the participants are not directed but
walk around freely while the nodes are operated remotely
from the server, requiring no interaction from participants. By
automating different test scenarios using server-side scripts,
we are able to rapidly acquire large volumes of data. Fig. 8
depicts path loss in a suburban environment calculated from
RSSI measurements and GPS coordinates of multiple devices
obtained using a round-robin transmit scheme, in which indi-
vidual nodes take turns operating as a transmitter while others
measure RSSI. This is a fast and efficient method to generate
data for inputs into complex propagation models that may
otherwise be difficult to obtain [12]. Fig. 9 (left) presents a
server-generated overlay of RSSI measurements obtained from
twelve Sitaras scanning a range of frequencies over a user-
specified duration. Here, each point radius scales relative to
RSSI and each color, again, represents a unique device.

Fig. 9 (right) shows a server-generated overlay from prior
measurements stored in the database using an automated com-
mand script. This image is generated by querying the server for
measurements (blue dots) from a specific device between two
time points. These measurements are not intended to locate a
known transmitter, but instead demonstrate the passive crowd-
sourcing capability. Regardless, if our object was to determine
locations of possible sensors, we could request another overlay
including multiple devices and an RSSI threshold. Along one
path in the figure, we also see a drop in measurements, this
likely indicates a loss of mobile data service in that particular
area.

We present these examples to demonstrate the utility of
the Sitara for conducting distributed spectrum measurement
experiments. In Section V, we discuss ways we can adapt our
platform to accommodate more sophisticated experiments.



Fig. 8: A snapshot in time showing path loss using RSSI
measurements from multiple Sitaras, distinguished by color,
as a function of distance from a transmitter. Using Sitara, such
data sets are easily generated and can be used for propagation
models.

Fig. 9: Server-generated overlays of remote RSSI measure-
ments from twelve devices carried by participants over a series
of experiments, where each color represents a unique device
and each point radius is scaled relative to RSSI value (left)
and server generated overlay of RSSI measurements from one
device over a wide-area (right).

B. Server-side Processing with GNU Radio

In this application, we report the capability of the Sitara
to capture IQ samples from an over-the-air FSK transmission,
upload the raw data to a remote server and recover the original
message by demodulating the signal in software using GNU
Radio. While this may superficially appear to be an unnec-
essarily complex method of performing a relatively simple
demodulation, we present this as a proof of concept and later
discuss the compelling implications when extended to future
areas of research.

The experimental setup uses multiple Sitaras, one acting
as the transmitter, while the others receive. The user gives
the transmitter a transmit command which directs the Sitara’s
radio to send a short message consisting of a preamble, sync
word and user-defined payload, using the CC1200’s native
2-FSK modulation format. The receiving Sitaras, instead of
demodulating the signal directly in hardware, are configured
to perform a triggered capture command while a carrier signal

is detected. Once the sample capture is complete, the IQ
samples, consisting of 16 bit integers, are uploaded to the
server where further processing occurs. In this case, we use
a simple GNU Radio flow-graph to demodulate the signal
(Fig. 10) and extract the payload message from one of the
captures. A plot of the angle samples captured from different
receivers can be seen in Fig. 11.

Fig. 10: A GNU Radio flow-graph used to generate the 2-FSK
demodulator script

Fig. 11: Waveform phase measurements obtained from a
triggered waveform capture using three Sitaras

Although only one captured signal was needed to demod-
ulate the incoming signal in this case, using multiple Sitaras,
several copies of the same waveform captured at different
geographical locations can be uploaded to the server for more
sophisticated signal processing. In Fig. 11 the waveforms
do not appear to be synchronized, but the relative timing
information can be recovered using the capture timestamp and
correlating between waveforms. This example demonstrates
the Sitara’s capability to capture an RF signal and upload
the data to the server for cloud-based reception. We want to
enable experimentation in coordinated mobile multi-antenna
reception, using centralized cloud computing, to be able to
separate signal from interference and demodulate signals that
may not be recoverable from any one receiver alone. Such



experiments have been demonstrated to be powerful with static
receivers [5], and Sitara can enable such experiments with
crowd-sourced mobile endpoints.

V. DISCUSSION

A. Follow-on Efforts

We plan to expand our framework to test more sophisticated
localization algorithms and develop propagation models en-
abled by our rapid data gathering capability across many sen-
sors. Hundreds of participants can accumulate millions of pair-
wise propagation measurements between different transmitting
and receiving nodes to generate new, highly accurate trained
models. Extending the server-side GNU Radio application, we
can apply Sitara to experiments in distributed, coordinated
signal processing as proposed by others [4], [5], [9]. Our
system can be adapted to operate as a mesh network with other
devices or a testbed for additional network architectures. By
altering the network topology and allowing a single mobile
gateway to act as a central device to multiple Sitaras, and
improving clock synchronization, we may leverage diversity
gain to perform experiments in distributed multiple input
multiple output (MIMO) and coherent combining at each node.
Beyond these technical applications, in a future work we
plan on investigating incentives, privacy and other participant-
related issues which are beyond the scope of this paper.

B. When should Sitara not be used?

Having presented a number of applicable use cases for our
system, there remain areas where the Sitara is not particularly
well suited. The CC1200 transceiver and RF front end limit
the frequencies in which Sitara can operate. Additionally,
the maximum sampling rate and Bluetooth throughput
constrain the SDR to narrowband operation. This is a direct
consequence of the design choices made to minimize cost
and maximize portability via a wireless back-channel. A more
sophisticated receiver would require an FPGA or another
ASIC with a much higher clock frequency and a delicate
analog RF front-end. This would not only substantially reduce
battery life, but also increase device cost. Our platform is
designed to operate in ISM bands where transmission is
permissible and operating frequency is inherently restricted;
it is not intended to be a wideband receiver. Despite these
limitations, there still exist many other applications where
Sitara would be a suitable test platform [10].

VI. CONCLUSION

The absence of viable options for large scale, coordinated,
crowd-sourced spectrum sensing motivated our development
of Sitara, which we present here. We characterize the system
and highlight its advantages for distributed spectrum measure-
ment activities. We promote our design based on its merits:
(1) Energy efficiency, with a battery life lasting up to one
week — sufficient for a broad range of experiments. (2) An
inexpensive, compact form-factor including a wireless back-
haul, offering an ideal solution for mobile, crowd-sourced

scenarios. (3) Capability of local, manual or automated, and
remote operation of sensors within a network distributed across
a wide geographical area. (4) SDR capabilities to measure
complex temporal and spatial RF interactions. We showcase
the Sitara’s capabilities in real-world scenarios and evaluate its
performance. The Sitara is a valuable open-source resource for
research in distributed software-defined radio sensing.
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