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On Passive Privacy-Preserving Exposure
Notification using Hash Collisions

Phillip Smith, Shamik Sarkar, Neal Patwari, and Sneha Kasera

Abstract—Even as the COVID-19 pandemic drove advances in
contact tracing and exposure notification systems, user privacy
challenges continue to plague otherwise promising approaches
to contain contagions. We propose a novel, scalable approach to
address privacy in contact tracing that improves utility. We apply
passive WiFi scan data using two metrics suitable for estimating
contact between users. We support this with real world exper-
imental data captured across a range of environments relevant
to contact tracing. To preserve privacy, we leverage properties
of truncated cryptographic hashes in an adaptation unique to
contact tracing. This hash collision filter allows users to share
information about potential contacts with a central server without
revealing sensitive information. Using an aggressive threat model,
including adversarial users and a malicious server, we share
how this technique can improve utility while still providing
strong security protections compared to other approaches using,
for example, only Bluetooth (BT) or global navigation satellite
systems (GNSS). Finally, we discuss a capability of this approach
that allows notification for asynchronous co-location from past
contacts.

Index Terms—Exposure Notification, Contact-Tracing, Hash
Collision

I. INTRODUCTION

Exposure notification plays an important role in monitoring
and containing outbreaks. Viral outbreaks including H1, H2,
H3 influenza subtypes, and most recently the SARS-CoV-
2 coronavirus, have spurred research and global efforts to
mitigate its effects [2], [21]. This led to improvements in more
technologically automated solutions—sometimes referred to
as digital contact tracing—including ambient wireless signals,
Bluetooth (BT), blockchains and ultrasonic beacons [2], [20],
[27], [35], [39]. Research continues to resurface important
questions centered around user data privacy; existing and past
approaches to contact tracing often violate individual privacy,
resulting in diminished adoption rate and consequently, dimin-
ished utility [42], [46]. The ubiquitous use of personal mobile
devices has enabled and expanded possibilities for contact
tracing while further compounding users’ privacy concerns.
Even after some of the more recent, state-of-the-art approaches
proposed by Apple and Google, DP-3T or PACT, challenges
remain [12], [34], [40]. BT-based approaches introduce an
attack surface by opening an interactive protocol to anyone
within range and may need to be adapted to provide useful
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context such as location and time. The original BT Privacy
LE MAC address rotation scheme used by these has exhibited
susceptibilities to attack [4]. Despite these and other secu-
rity measures, recent work has demonstrated the feasibility
of tracking using imperfections of BT’s physical layer RF
fingerprints [14], [31]. These and other security and privacy
challenges can discourage widespread use and effectiveness
of these newer approaches. Finally, one important capability
is the ability to detect lingering contagions from a recent
spreader. If a coughing carrier in a hospital waiting room exits
and others enter the same room a minute later, they will likely
be exposed to contagions which would remain undetected
by the prominent BT-based contact tracing approaches, for
example. We emphasize this because emitted aerosols and sur-
face contaminants, SARS-CoV-2 contagions in particular, may
persist in many different environments for extended periods of
time [17], [22], [25], [30], [33], [43]. Without this capability,
exposure notification systems under these conditions would
produce false negative results. We address these challenges
and improve upon passive WiFi scanning approaches to allow
asynchronous co-location contact tracing while protecting the
privacy of users.

A. Overview

Prior to the technique and implementation details we de-
fine some key terms and briefly describe a contact tracing
scheme using our approach—for the purposes of this work,
the terms contact tracing and exposure notification are used
interchangeably unless a distinction is warranted. A deployed
system consists of different actors exchanging information
while observing the principle of least privilege. These actors
include the user, server, care provider and key authority.
Users record WiFi power measurements throughout the day
and store these, along with hashed access point (AP) service
set identifiers (SSID, BSSID) in groups partitioned by time
intervals. The individual hashed identifiers that comprise these
groups are called context keys. We use these groups of context
keys to determine the likelihood of contact between users and
carriers, or users who have tested positive. This is done by
associating sets of context keys with relative locations and
identifying those common between a regular user and carriers’
keys shared with the server. Carriers’ past key groups are
uploaded to the server by their care provider after obtaining
positive test results. In order to determine whether a positive
contact has occurred, a user queries the server by sharing
some set of her past key groups and a unique authentication
token obtained from the key authority. If the token is deemed
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valid by the server authenticating with the key authority, the
server accepts the user’s query and responds by returning the
received signal strength (RSS) values associated with any of
the matching keys as well as those keys’ respective group
IDs. This information is then used to estimate the likelihood
of contact using our methods described in Section III.

B. AP Matching and Euclidean Distance
For contact determinations we compare two metrics: AP

match and Euclidean distance, based on RSS. The first ap-
proach reports a metric based on the observed APs common
between two users over a defined scan interval. The closer
two individuals are to each other, then the higher the match
metric. An empirical threshold is established to determine
what match value should be associated with a contact. We
include modifiers to improve robustness across environments
of varying distributions of APs.

The second measurement approach associates the Euclidean
distance between the RSS vectors to the physical distance
between two devices (i.e., individuals). A cost factor asso-
ciated with the vector length is used to increase reliability
and consistency across measurements. We demonstrate the
effectiveness of these approaches in selected measurement
scenarios. These methods are able to distinguish distances
less than three meters between users. Graphical, numerical
representations of these results are presented in their respective
sections.

C. Preserving Privacy
After establishing the efficacy of the proximity detection

technique, we address the challenges of security and privacy.
The combination of these techniques combined with present
and past proximity detection become the primary advantage of
our approach over others. Proximity context is inferred from
WiFi access point beacons in much the same way that WiFi
fingerprinting techniques can be used for localization, but with
one important distinction: the ephemeral nature of radiofre-
quency (RF) propagation channels which normally presents a
challenge to static RF maps instead enhances privacy through
entropy. Additionally, through application of our hash collision
filter, segregation of sensitive information and limitations of
server access, we offer an efficient system, secure against many
attacks by users and against server compromise. The hash-
based abstraction obfuscates the identifying information (the
BSSID and SSID) unique to a physical location while still
allowing match and distance calculations. This AP informa-
tion, is combined with a timestamp and hashed together to
associate a geospatial point for proximity detection. Distance
between two matching contacts’ hashes can be inferred once
the server provides quantized RSSI information to a user for
each successful hash match submitted in a query. We analyze
an aggressive threat model to identify possible attacks and
avenues for information leakage.

D. Practical Implementation
After providing the theoretical foundation and analysis for

our contact tracing approach, we present a system evaluation

based on an implementation with synthetic user data. This
demonstrates the scalability and feasibility of this approach
for large-scale deployments. We conclude by discussing imple-
mentation details, focusing on trade-offs, hardware constraints
and outlying cases of environmental limitations. These include
potential pitfalls of mismatched, asynchronous scan intervals
among different parties which would lead to false negatives,
hardware or firmware limitations throttling WiFi scan rates
and effects on power consumption. RF environmental limita-
tions may occur in locations of sparse WiFi APs or unusual
distribution among participants and surrounding APs.

We evaluate our WiFi proximity detection technique across
a mix of 12 sensors with hundreds of hours of samples
WiFi AP beacon measurements collected across different
environments. Our approach reliably detects close contact
between users carrying mobile devices, demonstrating the
ability to distinguish close contact (20cm) from socially distant
(3m) proximity in normal indoor environments. We prove the
feasibility of our system by testing a sample implementation
against more than 300M synthetic users. To summarize, the
main contributions of our work consist of:

• An effective, privacy-preserving, passive WiFi-scanning
technique adapted to contact tracing using our hash
collision filter

• An improved method to detect possible exposure to lin-
gering contagions in an environment (i.e.: asynchronous
co-location)

• An implementation, evaluation, and threat analysis of our
approach using collected real-world data

II. RELATED WORK

Recent research includes many proposals for digital contact
tracing. We point to some the more influential and relevant
papers among these. Our WiFi-scanning solution contrasts
with many similar, more mainstream BT-enabled contact trac-
ing solutions [12], [20], [34], [40], [44], often referred to as
”upload-what-you-heard” or ”upload-what-you-sent” schemes.
These generally share rotating, user-exchanged pseudo-random
keys with a server to improve privacy for exposure notification.
Variations of these approaches include the addition of location
context through GPS [37] and privacy improvements for the
uploader [7]. WiFi-based solutions offer different approaches,
such as [45], which uses AP association logs to infer
user proximity for exposure notification. Two cryptographic-
based approaches to WiFi co-location for contact tracing are
Enact [35] and Epic [2]. Enact more closely resembles our
work through the use of hashed identifiers, but requires AP
firmware modification; Epic employs an interactive, distributed
protocol using multiparty homomorphic encryption. The MIT
Safe Paths project’s Privatekit [36] proposes a variation on a
hash-based privacy-preserving WiFi co-location scheme. Many
countries have offered, recommended or even mandated a con-
tact tracing program based on these techniques. An excellent
summary and comparison of these approaches can be found
in [24]. Nearly all of these systems require some form of direct
information exchange between users, which we contend is a
security risk; our approach has no such requirement. A more
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recently published, complete system, called vContact, parallels
our approach in many ways and improves on the aforemen-
tioned WiFi-based approaches [24]. vContact presents a strong
argument for a WiFi-based solution where virus lifespan can
affect indirect environmental exposure beyond the oft-assumed
face-to-face modality. Our approach primarily differs from
the vContact system by focusing on the security and privacy
concerns associated with collection of such data. vContact,
in contrast, focuses more on the proximity analysis and only
briefly addresses security concerns. This work complements
the other related works proposing WiFi co-location for other
purposes [10], [28]. [11] compares various WiFi co-location
”matching” metrics.

Our privacy approach relates to existing work on proba-
bilistic data structures. While these were initially proposed
to improve efficiency in database lookups [5], later additions
include support for approximate evaluation queries [8]. Later
work adopted these techniques for differential privacy con-
trols [13]. [26] employs a truncated hash structure to prevent
system exploitation through a dictionary attack. [12] uses a
Cuckoo filter in exposure notification to improve performance
while strengthening privacy. Our approach favors the privacy
advantages of approximate evaluation queries over the tradi-
tional goal of space-optimization.

We present a threat analysis for attacks directly relating to
the privacy of our approach, while other works [7], [12], [48]
provide excellent analyses on other vulnerabilities common to
many digital contact tracing techniques.

III. AN UNCONVENTIONAL APPROACH TO
EXPOSURE NOTIFICATION

In this section we explain our approach by first describing
the concepts and techniques we developed to enable our digital
contact tracing system, followed by a more detailed description
of our implementation.

A. WiFi Proximity Inference
In contrast to manual or more recent widespread BT-enabled

approaches to contact tracing, we leverage the pervasive
deployment of WiFi APs to accomplish the same objective.
Applying the measurements from these observations improves
indoor localization where more common global navigation
satellite systems (GNSS)-based options alone are ineffective
due to poor signal penetration. Advances in localization and
RF fingerprinting using RF signal propagation and beacon
signals from WiFi APs contribute to a growing body of liter-
ature [3], [9], [18], [23], [38]. Probabilistic approaches, using
advanced pre-processing techniques and an offline machine
learning phase, have allowed researchers to achieve sub-meter
localization accuracies [19], [32], including a recent work
focused on contact tracing to include indirect environmental
exposures [49]. In order to achieve these results, extensive
computation and a priori knowledge must inform the model.
In practical applications, this limits the utility of WiFi finger-
printing to the locations where an appropriate RF map was
obtained. Furthermore, as the RF environment changes over
time, due to weather, obstructions or relocation of APs, the

model must be updated to maintain accuracy [19], [32]. These
same factors which negatively impact WiFi fingerprinting
either become irrelevant when applied to contact tracing or
instead serve to enhance privacy by increasing entropy. This
is made possible by the temporal constraint requirement of
contact tracing: the environmental conditions associated with
the relative locations of two individuals is only relevant for the
time period they are in close proximity to one another. Outside
of these conditions, the state of the RF environment becomes
immaterial. Fundamentally, contact tracing does not require a
physical coordinate to be known, and in fact a coordinate is
a privacy concern. We employ the use of measurements of
WiFi, BSSIDs and SSIDs for just such a purpose, which we
now describe in two complementary metrics.

B. AP Match Factor
As the distance between the two individuals increases, the

probability that they will continue to observe the same shared
set of APs also diminishes until no common APs are observed.
This concept forms the basis of what we will denote as AP
match factors, defined below.

Let p and s denote two users testing for contact with one
another. Let Sp represent the set of all APs observed by user p
over some time interval tp. Likewise, Ss represents the unique
set of all APs observed by user s over some time interval ts.
We refer to any set of observations over the defined interval
ts as simply a group.

Assuming ts = tp, i.e., overlapping synchronized observa-
tion intervals, we define the match factor µ using the Jaccard
Index as:

µ =
|Sp \ Ss|
|Sp [ Ss|

. (1)

We also define the modified match factor µm:

µm = µ

✓
1� 1

max(|Sp|, |Ss|) + 1

◆
. (2)

The introduction of the modified match factor provides a
weight, penalizing the standard match factor when very few
APs are present. Without this, in the case when only one AP is
visible by two observers, for example, the match factor may
indicate a perfect match, even when there could be a large
distance between them. This possible source of quantization
error diminishes as more, dispersed APs are present.

In order to ensure accuracy of the match factor, the start of
WiFi scan time intervals must be synchronized among users.
We accomplish this by recording and adjusting according to
the offset between the phone’s internal clock and its GNSS-
derived clock signal. Additionally, the duration of scan interval
must be long enough to capture at least one AP beacon; AP
beacon intervals are typically on the order of 100 ms, so
many would be captured within, for example, a 1-minute scan
interval.

C. RSS Distance Factor
Our second metric augments the matching approach by

introducing a distance function based on measured received
power values, or quantized received power, known as received
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signal strength (RSS), from surrounding APs. This technique
resembles those traditionally employed for WiFi fingerprinting
and localization. We use the Euclidean distance measurement
for this metric. We also introduce a scale factor to compensate
for variation of vector dimensions between different sets of
observations. Our distance functions, Euclidean (De) and
modified Euclidean (Dm), are then defined, respectively, as
follows:

De =
h X

i2Sp\Ss

(qi � pi)
2
i1/2

(3)

Dm =
h 1

|Sp \ Ss|
X

i2Sp\Ss

(qi � pi)
2
i1/2

, (4)

where pi and qi are the received powers of signals from AP i at
the two receivers. Notably, as the accuracy of the match factor
depends on the number of APs, so will the received power
distance factor. Although we do not introduce a cost or penalty
for this metric when fewer APs are present, this information
can be inferred from the modified match factor associated
with two locations. In general, our requirement is similar to
that for localization for trilateration. Three APs would be
the minimum requirement to disambiguously co-locate two
contacts. Even in the case of three APs, if they themselves
were not spatially separated, they could not reasonably be used
to infer proximity.

As the physical distance between two individual observers
decreases, on average, so do these proxy distance metrics
due to RF propagation. Consequently, these provide useful
measures to estimate the proximity or likelihood of contact
for purposes of contact tracing. Section IV includes sample
results we captured across different scenarios.

Sharing these measurements could allow an adversary to
reconstruct a location trace and uniquely identify a user. We
introduce techniques to prevent this in the next section, with
a more detailed evaluation in Section IV-C.

D. The Hash Collision Filter

The foundation of our privacy technique lies in our data
structure we call a hash collision filter, which allows a user to
query a key-value database without exposing the actual data. In
our application, the keys encode important context information
while the response confirms membership and association with
other elements. This design can prevent information leakage
of potentially sensitive information by concealing the under-
lying information while providing ambiguous results to naı̈ve
attackers. This filter is related to hash tables and classes of
approximate member query filters. Our filter uses well-known
properties of a truncated hash to ambiguously encode context
information in the keys while providing a key-value lookup for
existence and group association in the response. It occupies
a memory footprint that scales linearly with the size of the
contents, while yielding no false negatives and providing a
user-definable, constant false positive rate. The problem our
hash collision filter aims to solve can be summarized as: Given
a set of hashed data elements (context keys) associated with
one particular group G0, does there exist within the database,

any such group Gi which shares more than n hashed elements
in common?

Although our hash collision filter can be used to store other
types of associated data elements, we tune the parameters to
enhance its utility for sharing WiFi-based proximity context
for contact tracing. In this application, elements, or context
keys, will consist of hashed SSID/BSSID observations, a
pseudo-random value and timestamps, grouped according to
time interval and hence indirectly associated with a location.
Users query the server by submitting their context keys. If
received responses indicate that more than n context keys
are found belonging to the same group in the server, then
contact is presumed. This exchange allows a user to employ
the AP matching technique, defined in Section III-B, to
become informed of possible contacts. We employ a weak hash
function to obfuscate the data underlying the individual context
keys within a key group. Typically, a weak hash function
is undesirable because it is vulnerable to various forms of
collision attacks; the opposite is true in our case. Consequently,
an adversary querying the server in an attempt to discover a
user’s original observations may find many unrelated matches
(collisions) across different groups. Additionally, the attacker
will find it computationally infeasible to identify combinations
of (n or more) hashes within the same group (which would
indicate a true match). Such information would be necessary,
for example, to estimate a user’s location history. A threshold
of n common context keys among groups can be chosen
based on the cost of a false positive rate versus the level of
desired privacy, the expected number of APs available in an
environment and, to some extent, processing overhead. We
summarize the desired characteristics of a hash collision filter
as follows:

Given a particular group, consisting of context keys,

1) The probability of at least one duplicate context key
appearing in another group within the database must be
high

2) The probability of more than n particular context keys
belonging to one group also occurring within any other
group in the database must be very low

3) The size of the input space, group size and hash function
output length must be chosen such that a dictionary
attack is not feasible

The first two conditions can be met by choosing the optimal
combination of hash length and group size, as a function of
the number of participants. For our implementation we use
the SHA1 hash with output truncated to the desired hash
output length. The basic requirement is that the chosen hash
function should produce independent, uniformly distributed
values across the output space. The mathematical derivation
for these is given below, while the third is covered in Section
IV-C.

Let s represent the size of the hash output space and g the
group size, or number of context keys belonging to a group
with p = (s� g)/g.

The probabilities of zero, one and more than one collision
occurring among a particular group of g context keys against
any other group in the database are given, respectively, by:
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Pr(C = 0) =

✓
g

0

◆✓
s� g

s

◆g

(5)

Pr(C = 1) =

✓
g

1

◆✓
s� g

s

◆g�1 ⇣g
s

⌘
(6)

Pr(C > 1) = 1�
"✓

g

0

◆✓
s� g

s

◆g

+

✓
g

1

◆✓
s� g

s

◆g�1 ⇣g
s

⌘#
,

(7)
where C is the number of collisions. If we define a random
variable XC=c to be the number of groups with c collisions
and b as the number of groups in a database, we can compute
the expected number of groups with zero, one or more than
one collision across all the groups (of g context keys) within
a database as follows:

E(XC=c) = bPr(C = c) (8)

E(XC>c) = bPr(C > c) (9)

We choose c = 1 as the threshold for the number of
collisions between groups. The parameters must be fixed
for the anticipated size of the user base. Depending on the
chosen parameters, hardware resources could become cost
prohibitive, or systems may need to be regionally distributed
rather than centralized for large populations (e.g. billions of
users). For an example deployment across a population of
100M active users, we may need to store billions of context
key groups groups (see Table II) if we choose a 37 bit hash
length for context keys. This is derived from the equations
above to yield an expected 4.37 duplicate context keys, or
collisions, occurring for any one context key query across a
fully populated database. The expected number of occurrences
for the collision of any two arbitrary context keys in the same
group across a fully populated database would be 3.0x10�11.
Given our threshold, this number would also be interpreted as
the false positive rate for the match factor. These parameters,
group size and hash length, can be adapted to improve privacy
at the cost of an increase in the false positive rate. Similar
to others, the strength of this privacy mechanism depends
not only on the parameters but also the foreknowledge of
an adversary. We analyze its effectiveness in several threat
scenarios in Section IV-C.

E. Threat Model
While many potential attack surfaces exist in a large,

publicly accessible, distributed network system, we constrain
our threat model as follows:

• Data in transit is protected with application-layer security
and an adversary has no means to break this encryption
or exploit these transmissions

• The key authority services are not compromised (i.e.,
remain trusted)

• Patient information at the health provider remains se-
cure 1

1The health provider does not retain or submit location data but approves
submission by a user

• An adversary is familiar with the system protocol and has
access to publicly available information, including remote
server access as an ordinary user

This primarily limits the attack surface to the protocol and
server interactions. We frame the primary threat as a mali-
cious user seeking to obtain other users’ location information,
identity and infection status. We also consider similar attacks
from a compromised server. Other attacks, such as disruption-
of-service or side-channels, are beyond the scope of this work.

F. System Implementation

We use our implementation to demonstrate the scalability
of our approach. We describe the assumptions and design
decisions for one possible architecture. Our system comprises
four actors: users, server(s), a care provider and the key author-
ity. These are illustrated in Fig 1. Throughout the day, users
record WiFi power measurements and hashed AP identifiers
for proximity location context. The key authority sets the
length of the hash function, releases daily crytographic keys
and authenticates users for server queries. The key authority
protects against certain classes of attacks as a complement to
the hash collision filter. A new user must request access from
the key authority through a trusted exchange which uniquely
identifies that user. This can be similar to processes for know-
your-customer transactions or an in-person exchange at, for
example a healthcare provider. Once the initial exchange takes
place the user can authenticate with the key authority and
there is no need to retain the identity associated with that
access key. After authenticating with the key authority and
receiving a token, a user may query the server to determine
whether likely contact occurred with a carrier. This may be on
demand, but in order to efficiently manage server resources, a
daily scheduled background task would be more efficient. The
server stores past location contexts as hashed keys for carriers
who have tested positive. The server obtains these records
from an individual with authorization from a care provider
after confirming test results; the care provider does not retain
user location data. The server maintains these records for a
set period of time appropriate for characteristics of the viral
strain.

Fig. 1: System diagram depicting information exchange
among, from left to right, a user, the key authority, a server,
the care provider and a carrier.

Procedure

1) Each user continuously scans and records all observable
AP beacons, capturing SSID, BSSID and RSS
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2) Up to 10 AP beacon measurements with highest RSS
observed over one minute time intervals are hashed and
stored individually as context keys:
hj = H(BSSIDj , SSIDj , k(time), time), where H()
is a hash function and k(time) is a pseudo-random value
derived from the time and random daily key distributed
by the key authority; time is epoch time at the resolution
of the (in this case one minute) interval ts2

3) Time intervals are synchronized with GNSS time, and
grouped according to their time interval

4) If a user tests positive, the health provider uploads the
user’s n last context keys to the server, where n is
defined by policy guidance relating to disease incubation
period or pathology

5) Groups of context keys are stored in the server according
to Group ID, which is generated for a set of associated
context keys when they are uploaded3

6) A user, wishing to test for contact, requests a temporary
token from the key authority, which authenticates and
limits the rate of queries. This is computed as:
u = ks(H(UUID), time), where ks() represents en-
cryption using a symmetric key known only to the key
authority and server; and H(UUID) is the hash of a
unique identifier used to confirm an authorized user

7) The user then queries the server by sending u,
H(UUID) and up to m context keys

8) The server responds to the request by returning RSS
and Group IDs for any of the context keys found in the
server4

9) The user then computes the probability of a contact
based on the AP match factor and the RSS vector
distance metric

The server stores groups of associated context keys of
carriers in memory as a hash table along with their group
IDs and RSS values. After authentication, as users query the
server with some of their own context keys, the server responds
with the group IDs and RSS values associated with the user’s
context keys, if present. A user authenticates by presenting a
unique ID to the key authority, which in turn responds with a
token: the encrypted output of the current time and hash of the
unique ID. The key authority maintains a record of authorized
user IDs and limits token issuance over, in our case, a 24-
hour period. The user presents this token and unique ID to
the server performing a query. The server then computes the
token for that user ID and compares the outputs; a match
authenticates the user and results in a server response. This
architecture provides several advantages in that it reduces the
authentication overhead of computation on the server, thereby
sparing resources for processing user queries, improves pri-
vacy by separately storing and processing unique identifiers

2To perform asynchronous contact tracing, duplicate RSS observations
would be paired with prior, in addition to current, timestamps

3The health provider may upload multiple users’ context keys at a time to
reduce the possibility of linkage attacks by a malicious server

4If the server does not contain sufficient records to provide the expected
number of collisions, then an appropriate ratio of false matches can be
generated and returned in response to queries

and proximity context information and allows flexibility to
adapt key length and security measures as required. We further
examine the latter feature in Section IV-C.

Empirical data drove a quantization of the RSS value
to improve the match rate, because RF fading and natural
variation in RSS measurements could lead to false negative
matches across two groups as we discuss in our evaluation.
This quantization provides a margin in which a match may
still occur. Likewise, the timestamp for each value is a group
timestamp at the start of a scan interval rather than a timestamp
unique to an observation.

G. Asynchronous Co-location
One of the primary advantages of our approach over the

Bluetooth-based (BT) exposure notification systems is the
possibility of contact tracing beyond simultaneous contacts. By
expanding hash groups from a location with prior timestamps,
a user would be able to query the server to identify instances
where an infectious carrier had previously been. Alterna-
tively, to reduce the number of records processed, the scan
interval can be increased to span a broader temporal period.
Asynchronous contacts would be useful if, for example, a
particular contagion is known to survive on surfaces or in the
air for a prolonged period of time — as we have learned of
SARS-CoV-2 [30], [33]. Because they rely on exchanges of
information between individuals present, BT contact tracing
cannot detect non-simultaneous exposure when the carrier and
the user visited the same location one shortly after the other.

IV. EVALUATION

A. Proximity Measurements
Here we present a selection of results collected to evaluate

the effectiveness of our techniques as they would be used
for proximity estimates. We tested scenarios representative
of locations that would be of interest for contact tracing
— large and small publicly accessible indoor spaces. Most
sample intervals of indoor locations contained at least 10
APs, but sparse outdoor locations and, for example, park-
ing lots would often contain less. We also include outdoor
measurements for comparison. Each of these figures includes
distance between two contacts in meters as reported via GPS
(blue) with unitless RSSI Distance and Match Factors in
red. WiFi measurements were obtained across heterogeneous
devices to account for variations in hardware and firmware.
These include phone models HTC 2PZC5, ZTE Z558VL,
ZTE 2017U and NodeMCU microcontrollers containing Qual-
comm’s Snapdragon 835, 210, 820 and Expressif’s ESP8266
WiFI SoC, respectively. This assortment captures a range of
quality including (formerly) flagship hardware, entry level
and commodity electronics. For the Android devices, we
forked the open source wiglnet application to automate WiFi
scanning and logging. Notably, iOS does not currently have an
accessible API for WiFi scanning, so a firmware update would
be necessary to fully implement this system on iPhones. We
also developed an automated control and collection framework
in micropython for use with the ESP8266 hardware. The
latter software allows bulk collection in mobile (with cellular
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hotspot tether) or static environments with programmable scan
intervals, timestamp clock synchronization, automatic data
uploads and over-the-air updates. Table I provides a summary
of the measurements we present here.

Scenario Reference Description
Fixed Distance Fig. 2 RSS and Match Factors for two

devices held at a fixed distance
throughout an indoor environment

Match Thresh-
old

Fig. 3 Composite measurements illustrat-
ing RSSI variance and threshold ef-
fect on matches

Environments Fig. 4 Six series of indoor/outdoor dis-
tance measurements on one device
relative to a single point

TABLE I: Summary of Measurement Experiments

While some of the results include seemingly precise dis-
tance measurements, these are merely for reference and their
accuracy would largely depend on the environment. In gen-
eral the question we seek to answer is of precise distance
but rather, what is the likelihood that two contacts were
in close enough proximity that transmissible contact may
have occurred. Fig. 2 shows results in an indoor environment
showing close contact (<1m). These results display a series
of measurements between two devices (with different WiFi
chipsets and Android OS versions) fixed at two distances
relative to one another while navigating through a typical
indoor residential environment at ground level with obstructing
wood/brick reinforced walls, furniture and 12 visible APs . The
average match factor between the two devices were 0.59±0.21
and 0.63± 0.20, for 20cm and 3m, respectively. The average
RSS distance factors were 0.12± 0.05 and 0.15± 0.06. RSS
distance factor is displayed in the top pane, while the match
factor is on the bottom. The measured GPS distance between
points is shown in blue in both panes with its 68% confidence
interval (provided by the Android API [15]).

Fig. 2: GPS (blue), RSS and Match Factors (red) along an
indoor path between two devices fixed at a 20cm distance.

The RSS distance measurements track the actual GPS
measurements more closely over shorter, indoor distances. In
contrast, for large distances, the match factor performance

improves relative to the RSS distance metric. These relation-
ships are depicted in Fig. 4. The primary difference between
these environments would be the proximity and relative signal
strength of measurements and, consequently, a higher number
of marginally-observable APs for outdoor measurements. The
other effect of increased radial distance from an AP is the
increased region of ambiguity; i.e., a higher RSS constrains the
physical distance estimate to a smaller circumference around
an AP while a lower RSS can represent not only a larger
circumference but also increased variation among the radial
distance as propagation effects introduce additional error.
Along shorter distances with higher RSS, there may not be
enough variation or resolution between sets of observable APs
to distinguish two points. This can be inferred from the Control
Series of Fig. 3 (right). This curve represents composite
pairwise RSSI match calculations (more than 300,000 separate
comparisons) of varying thresholds across 9 static devices in
close proximity (<1m) over several hours. That is, on rare oc-
casions, two devices placed next to each other, measuring RSSI
during the same 10 second interval (in this case), can vary
by more than 20 dB. When comparing contacts, or matching,
the RSSI threshold is key. Because even two identical devices
sitting beside each other may not measure the same RSSI
during the same interval, it is beneficial to further quantize
the value. The quantization threshold should be large enough
to capture the typical variation in RSSI but still small enough
to establish some association with proximity. Variations in
RSSI between devices can contribute to this challenge. For
our measurements, we observed that in a controlled static
co-location situation (but different orientations), the variation
in RSSI measurements for the same observed AP between
ESP8266 nodes, homogeneous hardware, was greater than
the variation between heterogeneous hardware of the mobile
phones used. Accordingly, we chose the low-cost ESP8266
RSSI node variance characteristics for control, as represented
by the blue curve in Fig. 3. The other curves represent hours
of composite pair-wise static measurements in different indoor
environments for varying RSSI thresholds with physical prox-
imity difference. From these control experiments, it would be
reasonable to suggest an RSSI threshold/quantization between
10-15 dB to account for variation while preserving distance
inference. This threshold could reliably, determine whether
contacts are in the same room, same building or city block,
for example, while avoiding false negatives that could occur
if the minimum number of matches did not occur.

Fig. 3 (left) shows a representative snapshot of the number
of matches between two static, co-located nodes when the
measured RSSI of the same AP (meaning same Basic Service
Set Identifier (BSSID) and channel) differ by less the 12 dB.
Additionally, an approximately 3 hour time interval was parsed
from a larger data set because it captured more than 80 unique
APs. This is because the nodes were placed close enough to
a road with a busy morning commute to capture many mo-
bile/vehicular hotspots’ beacons. Under normal circumstances,
there would typically be only 10-12 APs visible from this
location.
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Fig. 3: The scatter plot (left) shows the number of matches between two co-located stationary sensors in the presence of more
80 access points, mostly mobile hotspots, over a period of approximately 3 hours with a 10 second measurement interval and
12 dB RSSI match threshold. The figure on the right presents the number of matches for several dispersed sensor measurement
series of different distances in a complex indoor environment across a range RSSI match thresholds

B. System Performance
We demonstrate the scalability of our system by benchmark-

ing our implementation as it may be deployed across a large
user base. We measure memory, computation and throughput
limitations by generating large quantities of client requests to
a server using synthetic data. The first two test configurations
consist of up to five machines generating equal numbers of
client requests. Each single request comprises a query of 1000
records at the server. For this implementation we choose a 48-
bit hash length with 32-bit length group keys — we examine
the rationale for these lengths in Section IV-C. The server
hosts either 200M records, consuming 22.1 GB of memory,
or 4B records, consuming 434GB of memory. The third
configuration, 434GB Local, is identical to the second except
that the client requests are generated on the local machine
instead of remote hosts. These tests determine whether system
limitations would arise due to memory, CPU, network or
I/O constraints. The data are summarized in Table II below,
showing the elapsed time for each test configuration and the
number of clients.

# Clients 22.1GB 434GB Remote 434GB Local
1000 3s 3s 3s

27000 43s 47s 52s
90000 152s 170s 175s

TABLE II: Shows the average elapsed time to serve increasing
numbers of clients for each test configuration. Each client
represents 1000 record requests.

The server records are stored in a hash-keyed dictionary.
The dictionary contains a randomly generated set of keys
based on the appropriate key length. A request consists of
look-ups for a series of keys, which have a complexity of
O(1). The difference in elapsed time bears this out when
comparing the first and second configurations — though we
do see a slight relative increase in average response time due
to secondary effects for very large number of client requests.

CPU load is not separately reported as it remained constant
across tests at 110%, representing utilization of slightly more
than 1 of the 64 available Arm cores (of a r6g.16xlarge AWS
instance). By comparing the second and third configurations
we conclude the process was not bound by network constraints
because the elapsed time follows a similar trend across all
configurations. Eliminating these other possible constraints,
we conclude that our system was I/O bound, likely due to
memory access requests.

We extend these results to estimate resources for larger
populations in Table III. We conservatively assume 1) a 50%
adoption rate among the population, 2) a peak 3% population
of active carriers, 3) every participant queries the server every
day, 4) every participant records measurements for 12 hours
every day, 5) 30% experiencing symptoms get tested [1] and
6) 2 keys per group are tested rather than querying all keys at
once as explained in Section IV-C3.

In practice, few contact tracing applications have achieved
a high (greater than 30%) adoption rate without mandatory
compliance [46], [47]. Additionally, a sustained active carrier
rate of 3% is overly conservative because at such a high rate,
contact tracing would have long since ceased to be useful
and only on rare occasions during the COVID-19 pandemic
were such levels observed [1]. The server only stores data
from carriers and responds to queries, so any computational
load imposed by hash calculations is distributed among users.
As the resource requirements following these assumptions fall
within the constraints of available commodity hardware, and
with the option of scaling to even larger instances as needed,
we did not focus on optimizations to reduce the resource foot-
print or investigate backend server architectures. Nevertheless,
the server load could be allocated among redundant, parallel
server instances and may employ query scheduling or queues
to conserve resources.
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(a) Measurements along a non-
overlapping perimeter path of a large
indoor retail store

(b) Overlapping path measurements cap-
tured in an indoor mall

(c) Overlapping path measurements cap-
tured in a residence

(d) Measurements along an overlapping
loop around a residential city block

(e) Non-overlapping path through a neigh-
borhood

(f) Overlapping path in an outdoor urban
downtown environment

Fig. 4: Distance measurements from three outdoor environments relative to a single point

Population # Records # Queries Memory
100M 2.52e10 5.04e11 2.7TB
330M 8.32e10 1.66e12 9.0TB

1B 5.04e10 5.04e12 5.5TB

TABLE III: Maximum server requirements for varying popu-
lations

C. Threat Analysis

Contract tracing in any form requires an individual to
disclose past locations or some form of spacial context in
order to establish possible contacts. Besides the capability of
past non-simultaneous contact tracing, the primary advantage
of our WiFi-based contact tracing approach hinges on its
favorable adaptation towards the hash collision filter privacy

mechanism, which conceals the spacial context. Accordingly,
the guarantees and limits of this approach necessitate more
rigorous analysis.

1) Cryptographic Attacks: Privacy depends on the param-
eters of the hash collision filter and adversary’s knowledge
about the database contents. We consider three methods of
cryptographic attacks: brute force, dictionary and targeted.

Brute Force. An adversary could attempt to compute all
possible keys and unique groups to identify the inputs that
match corresponding key groups in the server.

We define I as the set of possible inputs up to length lI
bits, G to be the set of all possible unique groups of size
g consisting of unique elements of I. The total number of
possible unique groups is then given by |G| =

�|I|
g

�
.

An adversary would identify group matches by querying
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the database over a list of inputs. This becomes infeasible to
compute the groups, and hashes of each element in the group,
over inputs of any useful size. For example, a small input space
(e.g., 32-bit) computed over small groups (2 elements) would
require computation and comparison of

�232
2

�
⇡ 9.2x1018

groups of hashes. If an adversary knows what a match should
look like, then a more efficient dictionary attack is possible.

Dictionary Attack. Statistical properties of the data such as
character sets, field lengths or common identifiers can reduce
the input space. Notwithstanding, if parameters for the hash
collision filter are appropriately chosen, even these attacks
become infeasible. Here the input space would be all possible
combinations of SSID, BSSID and range of timestamps. A
pre-computed dictionary attack would also be complicated by
the inclusion of the key authority’s rotating keys in the hash.
Still, a successful attack would require associated locations to
prove useful.

For a naı̈ve dictionary attack, we calculate I, the set of
possible inputs. This is then computed as:

ID = (SSIDall)x (BSSIDall)x (T imeSteps)

ID =
�
2256

�
x
�
248

�
x (1440)

ID ⇡ 4.7x1094

Although still too large, with a few assumptions, the input
space can be reduced. A dataset containing the 10,000 most
common SSIDs from Wigl.net contains 89 unique characters
with an average length of 9.4 characters. This yields (89)9.4 ⇡
261 combinations for SSIDs. The current list of Organizational
Unique Identifiers, which occupy the first 3 bytes of BSSIDs,
contains 29508 BSSID prefixes, limiting BSSIDs to (29508 x
224) ⇡ 240. Computing the input space as above, we obtain
Id ⇡ 3.7x1033:

Id = (SSIDI)x (BSSIDI)x (T imeSteps)

Id =
�
261

�
x
�
240

�
x (1440)

Id ⇡ 3.7x1033

These combinations would still need to be tried as group
sets of context keys; a narrower target input space would be
necessary.

Targeted Attack. With specific knowledge about a record
that may be contained within the hash collision filter, it may
be possible to confirm the existence of this record with high
probability. Depending on the extent of this knowledge, we
may conclude that the privacy of the record is implicitly
compromised. In a linkage attack, if an adversary knows where
a target may be, she may attempt to obtain and compute a local
mapping of APs for some time period. Some location-based
services already use such lists as inputs for coarse location
estimates; open crowdsourced services may also provide such
lists [6]. If we use the total number of reported APs from
Wiglnet, we get the following result.

It = (SSID �BSSIDcombo)x (T imeSteps)

It = (721, 920, 161)x (1440)

It ⇡ 1.0x1012

If we assume, per our implementation, a group size of 10, but
at least 2 matches per group to indicate contact, then we have
|G| =

�|It|
2

�
⇡ 7.5x1014.

We can improve this attack with local mappings. By
targeting a user assumed to be in a particular region, the
input space can be restricted to APs from that locale. Data
from Wigle.net suggests U.S. postal codes can contain many
thousands of WiFi APs, for example [6]. Another method
would segment the WiFi database into boundaries by, for
example, using K-nearest neighbor with a maximum distance
threshold consistent with WiFi propagation considerations. By
targeting a limited region or segmenting as described, the input
space for an attack could be significantly reduced but may still
require express collection efforts to map and maintain accurate
records for an environment. This is particularly important for
our approach because the difference of even a single node in
a region of interest, perhaps due to outdated source database
records, could defeat this type of attack.

We also note, as others have [16], that a threshold for
the level of protection afforded by a location-based-service
privacy mechanism is sufficient if the amount of effort required
to de-anonymize or track an individual is no less than what
traditional investigative methods would require. In our targeted
attack example, in order to succeed in a linkage attack against
a target in an area, accurate records would be required.
Physical measurement efforts (i.e., WiFi wardriving) would be
necessary to ensure success. If no specific target was selected
but instead the goal was an exploitation for a linkage attack
from any leaked information, then the attacker would still
need to deploy sensors which can unambiguously link sets of
context key groups — which would be particularly challenging
in crowded public areas where users’ paths cross. Assuming a
continuous trace were captured, the adversary would still need
to query the server a sufficient number of times without being
rate limited.

2) Additional Countermeasures: To reduce the effective-
ness of targeted attacks, we outline several countermeasures
that were not implemented in our prototype but would be
desirable for deployment.
Rate Limiting. The server limits the number of queries a
user can make. The key authority provides an authentication
token and allows the server to recognize excessive queries
from a single client. The number of queries per day are
limited to two weeks’ worth of observations. This is sufficient
for contact tracing but far short of the number necessary
to succeed in the cryptographic attacks we outlined above.
Even in a collusion attack in which an adversary was able to
obtain access credentials from willing participants, the number
required would present a substantial effort and likely still bear
hallmarks of a coordinated attack — irregular access patterns,
connections from suspicious or similar IP addresses.
Daily Key Rotation. The key authority generates daily keys
used by clients as inputs to the hash function. The purpose of
these keys is to prevent an effective pre-computed dictionary
attack. Because the keys are only released to users each day, it
would impose a limit on the time available to compute hashes
for a naı̈ve dictionary attack.
Hash Length Reduction. In our implementation we choose a
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hash length such that the likelihood of obtaining one collision
or false match between groups is high, while obtaining more
than one is low. If we relax this requirement to allow multiple
matches, but still a fraction of the group size, then we mitigate
these attacks. The cost of this change would be an increase in
the false positive rate.

3) Server Attacks: Our prior attack scenarios involved
a user exploiting public interfaces to the server to obtain
information. Here we examine the risk of a compromised or
malicious server to user information.

Information Leakage. If an adversary obtains access to
all records uploaded to the database then the possibility for
information leakage would be similar to that described in
cryptographic attacks, except group ownership would already
be known and the rate-limiting feature would not exist. Using
the attacks mentioned before, we would assume an attacker
could eventually discover all locations associated with indi-
vidual uploaded records. The remaining risk to consider is the
possibility of a successful linkage attack among these records,
but because no association between submitted records is stored
in the database this becomes a challenge — largely depending
on the ratio of non-intersecting user traces. Researcher has
shown that at least 4 spatio-temporal points are necessary to
uniquely identify an individual among a collection of location
traces [29].

De-anonymization risks would increase if the server’s
database is sparsely populated, containing only hash keys from
a small population of users. Such a scenario could defeat the
collision obfuscation approach we propose. This vulnerability
can be overcome by returning false key groups in a user query
when the server’s database is not fully populated. Since the
hash output length is configurable, and the expected number of
hash collisions can be computed, the server can return a similar
number of false collisions embedded in randomly generated
groups–that are not associated with any real location. These
key groups could also be stored on the server until replaced
with true user submitted key groups to protect collected
information in the event of a server compromise.

Observing Uploads. If a server operator observes uploads
from users or carriers, then a linkage attack may succeed
because the association between consecutive key group records
may be discovered. Known location traces can be used to
de-anonymize users [29], [50]. This risk can be mitigated by
uploading group records combined from many carriers but is
not possible for normal user queries. Instead, a user could
upload one or two keys from each group. If the server responds
with a match for any of these keys, then another key from the
matching groups can be sent in a query. If both keys match in
a group, then the user can submit the remaining keys in the
matching group to confirm contact. In general this is effective
because the the highest-RSS APs are used for matching and
with, for example, a 1-minute scan interval it would be very
unlikely that two users in close proximity would not each
capture at least one of the beacon messages for such an AP;
additional keys would only be uploaded to achieve the desired
confidence and resolution, but only for locations where the first
key matched. Variations of this approach are possible where
the user (or a malicious server) may lie about matches to either

discover or conceal information.
4) Longitudinal Location Privacy: In addition to some of

the protective measures mentioned above, another privacy-
preserving technique generally available to location-aware ap-
plications is geofencing. In the context of exposure notification
and contact tracing, locations closely and uniquely associated
with an individual, such as work and home, can be excluded
from collection. Additionally, data collected while driving in a
personal vehicle could be excluded, while travel using public
transportation could be preserved. The timestamps, distances
and routes could be used to automatically distinguish the two.

Other privacy-preserving approaches available to location-
based services may not be applicable to the exposure notifica-
tion problem, or at least our approach. For example, location
obfuscation and coordinate transformation approaches could
increase privacy, but at the expense of utility or false positive
and false negative rates for contact events.

V. DISCUSSION

There remain related open research questions that could
further improve digital contact tracing systems. One example
would be comparative performance of different systems (BT or
WiFi) across different environments. Both approaches would
still be susceptible to multi-path effects and other distortions
but may perform differently in some environments. Could a BT
signal penetrate through a crowd versus a WiFi approach with
elevated APs providing a better line-of-sight to the sensors?
An extensive, large-scale deployment may be necessary to
answer such questions. Our future work will expand the
results presented here to include quantitative benchmarks for
environmental performance and power usage against other
leading approaches.

A problem that merits further investigation is the role
of mobile hotspots in WiFi-based contact tracing. For WiFi
fingerprinting, hotspots pose a challenge because their contri-
butions may be different or absent from the training model
data set. In our contact tracing application, however, mobile
hotspots may improve the results. This occurs because: (1)
A mobile AP provides an additional, ephemeral signal which
contributes to the uniqueness of a matched set of observations
at one point in time. (2) A mobile hotstpot is less likely to be
captured in a collected (e.g., ”wardriving”) database of WiFi
APs, improving security. The first characteristic contributes
to the quality of match by providing an additional AP. The
more APs available in an area, the more reliable and accurate
is the contact trace. The second characteristic contributes to
the robustness of a contact tracing scan against offline attacks
in which a user has access to a geotagged list of previously
observed APs.

Limitations of mobile hardware may also impact results.
BT-based contact tracing approaches required firmware up-
dates on IOS and Android devices to accommodate the beacon
exchange scheme. While not a limitation in our application,
state-of-the art WiFi localization techniques yielding precise
coordinates often rely on channel state information (CSI)
which is not normally available on mobile phones [9], [41]. For
WiFi, firmware-limited scan rates could impact performance
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and the user experience. Ideally, the exposure notification
application would exist as a background service, requiring
little to no user interaction on a daily basis. Additionally,
the application must not noticeably affect battery life on the
device. The latter consideration led manufacturers in recent
years to throttle certain functions, including, WiFi scan rate.
This was observed by other researches who noted an impact
on ”war-driving” applications. An alternate approach proposed
an adaptive scan technique [2] which only scans after some
threshold amount of movement was detected. Although not
implemented, we demonstrated the feasibility of this technique
and additional benefits in terms of reduced server storage
requirements and processing load.

VI. CONCLUSION

We introduced a new passive, WiFi-scanning approach to
contact tracing, offering improvements to security and privacy
through our hash collision filter. It also provides asynchronous
co-location capabilities. Our evaluation and threat analysis
shows its effectiveness against information-leakage attacks.
We demonstrated through our collected real-world data and
implementation that this system is scalable and a viable
alternative to BT-based approaches for deployment on mobile
devices.
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