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Abstract—Software-defined radio (SDR) platforms, despite
being an enabler of spectrum and infrastructure sharing, must
ensure that their transmitted signals comply with spectrum rules.
Violations may occur because of malware, misconfiguration,
bugs in software, or RF frontend nonlinearities. We present
FDMonitor, a full-duplex monitoring system attached between
a transmitter’s power amplifier and its antenna to monitor and
control each SDR in the Platform for Open Wireless Data-driven
Experimental Research (POWDER), an open city-scale SDR-
based testbed. FDMonitor uses a bidirectional coupler, a two-port
receiver, and a new source separation algorithm to simultaneously
and adaptively estimate the transmitted signal and the signal
incident on the antenna. FDMonitor has been running on
POWDER since 2021, monitoring 19 SDR platforms accessible by
outside experimenters. Its closed-loop feature sends alerts in real
time whenever a violation is observed, and automatically turns
off the SDR as necessary. Our experimental results show that
FDMonitor accurately separates signals across a range of critical
parameters. We further validate the system-wide performance of
FDMonitor with 27 months of observation. Over this period, it
achieves a positive predictive value of 95%, with a total of 45
false alerts. Beyond its use on POWDER, FDMonitor, as a novel
spectrum policy compliance solution, can be a key enabler of
more dynamic sharing applications.

Index Terms—SDR wireless testbed, full-duplex monitoring,
27-month system evaluation.

I. INTRODUCTION

Today’s open-access software-defined radio (SDR) wireless
testbeds [1]–[5] are widely used across academia and industry
for innovative spectrum research on topics such as dynamic
spectrum access (DSA) [6] and radio dynamic zones (RDZ)
[7]. As over-the-air experimentation of these technologies re-
lies on spectrum coexistence with other spectrum applications,
testbed operators must ensure that the transmitted signals
comply with all spectrum policies and rules imposed by the
operator or the national regulatory body, so that the testbed
operator does not risk legal liability or being shut down. This
paper presents the system that POWDER developed, tested,
and is using to monitor the spectrum transmitted by each of
its SDR platforms and to automatically turn off transmitters
in violation.

While POWDER is open to users, users are not required
to be open with their innovations, which adds complexity
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Fig. 1: A co-located base station’s signal is incident to an
SDR platform’s antenna. If the monitor cannot separate the two
signals, it may believe that its own SDR’s transmitted signal
is violating spectrum rules, which would be a false alarm.

to monitoring. POWDER users have bare-metal access to
compute and SDR resources and can run arbitrary software
stacks from physical to application layer. Full access gives
users complete control. It further allows complete privacy of
users’ (potentially) proprietary waveforms and software stacks
which can be commercial users’ intellectual property. Our
monitoring solution can not require access to user software.

Additionally, software-based monitoring is insufficient to
ensure compliance. Power amplifiers (PAs) and radio fre-
quency (RF) hardware in general have nonlinearities that can
induce spurious emissions that violate spectrum rules [8]. The
nonlinearities are difficult to characterize perfectly. As a result,
the exact analog signal transmitted from the antenna is largely
unknown. Further, monitoring only in software opens the door
to attackers that could evade spectrum violation detection.

RF-based spectrum monitoring. For these reasons, this
work proposes RF-based spectrum monitoring instead of
software-based monitoring for full spectrum awareness. We
describe our monitoring system as a full-duplex monitor
(FDMonitor) [9]. We use full-duplex to emphasize that it
continuously and simultaneously estimates both the signal
transmitted by the SDR and external signals incident to
the SDR’s antenna. As a result, FDMonitor simultaneously
provides two critical functions to POWDER operators:
• User monitoring: detect any violation of spectrum rules
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Fig. 2: Architecture and the closed-loop control of FDMonitor,
and the standard setup of its monitored SDR platform.

from transmitters in the testbed to ensure compliance.
• Environment monitoring: track potential interference from

the environment to POWDER experimenters.
Being the source of interference could harm POWDER’s

relationships with other (licensed) wireless operators. In fact,
POWDER has periodically received inquiries from licensed
operators about interference they observe. Our monitoring
datasets have been critical to demonstrate, as forensic evi-
dence, that our platform was not the cause.

However, FDMonitor has to address a critical and significant
challenge posed by co-located transmitted signals, as shown
in Fig. 1. POWDER’s base station antennas are deployed
on cellular towers by a tower provider. The tower space is
commonly leased to multiple operators, and antennas used
by other mobile network operators (MNOs) may transmit at
high power (e.g., 50 W) on the same tower. Since an antenna
is a two-way device, some of a co-located MNO’s signal
impinges on the POWDER SDR’s antenna. If we directly cable
a spectrum monitor to the RF line before the antenna, it records
both transmitted and incident signals, and cannot distinguish
them. In this case the monitor would wrongly conclude that
the user is transmitting in the band owned by the MNO and,
for spectrum compliance, turn off the POWDER SDR.

Hardware design of FDMonitor. FDMonitor’s bidirec-
tional isolation hardware is the first step to address the co-
located signal mixture problem. As shown in Fig. 2, a bidi-
rectional coupler measures the forward and backward traveling
signals on the RF path in two different linear combinations.
However, a wideband bidirectional coupler does not perfectly
isolate these two signals — the overall system can provide
only 10–15 dB difference in the power of one source between
the two coupled outputs. This is because RF subsystems
are not perfectly matched over the wide bandwidths across
which frequency-agile SDR platforms must be able to operate.
Counterintuitively, the platform’s transmitted signal and the
incident signal are carried in both directions on the RF chain,
so a directional coupler can only do so much.

Source Separation in FDMonitor. Separation of the trans-
mitted and incident signals from the combinations above is the
second step to realize accurate RF-based spectrum monitoring.
The problems of such separation, however, are: (1) the exact

linear mixture model is unknown and time-varying, and (2)
neither transmitted nor incident signal is known to FDMonitor.
Solutions like model calibration are time-intensive and require
frequent manual effort.

We utilize a frequency-domain independent component
analysis (ICA)-based source separation algorithm to address
the problem. It requires no information about the model or
the signals and estimates adaptively the transmitted signal, the
incident signal, and the linear mixture model all on the fly. Our
algorithm also tackles the resulting scaling and permutation
ambiguities of ICA so that the separated signals are at correct
power levels for violation detection and are identified correctly
as “transmitted” or “incident”.

Summary: The major contributions are as follows:
• Introduce the spectrum violation risks of SDR wireless

testbeds and the need of shared SDR platform monitoring.
• Propose FDMonitor as a systems solution that separates

mixed source signals, sends spectrum violation alerts, and
automatically turns off the transmitters as necessary.

• Implement FDMonitor and deploy it on 19 shared SDR
platforms available to researchers on POWDER.

• Evaluate FDMonitor’s separation performance thoroughly
over ranges of four RF parameters: modulation type,
carrier frequency, bandwidth, and transmit power.

• FDMonitor has been running continuously on POWDER
since 2021. It achieves a 95% positive predictive value
of all reported violations over 27 months of operation.

II. RELATED WORK

Full-duplex monitoring of the shared SDR platforms is
at the intersection of relevant research on (i) full-duplex
communication and (ii) spectrum sensing.

A. Full-duplex Communication

Full-duplex communication [10]–[13] enables simultane-
ous transmission and reception in the same channel, and
thus significantly increases spectral efficiency and network
capacity [14]. Both full-duplex monitoring and full-duplex
communication allow co-channel signal differentiation, but
the former is focused on monitoring spectrum use, while the
latter is for bidirectional communication. Self-Interference (SI)
[15], i.e., the contamination of the received signal with the
transmitted signal, is the biggest challenge for both. Proposed
SI cancellation methods can be classified as: (i) propagation-
domain, (ii) analog-domain, and (iii) digital-domain.

Propagation-domain SI cancellation methods isolate the
transmit and receive chain carefully to electromagnetically
suppress the SI before it shows up in the analog circuitry
[10] via path loss enhancement [13], cross-polarization [16],
transmit beamforming [17], or a circulator [18].

Analog-domain SI cancellation methods subtract a copy
of the transmitted signal from received signals in the analog
receive chain [10]. The methods can be classified as non-
adaptive [19] or adaptive [20] depending on whether a time-
varying environment is taken into consideration.



Digital-domain SI cancellation methods cancel SI from
quantified received signals after the Analog-to-Digital Con-
verter (ADC) [11]. A digital domain SI canceller first builds
a baseband-equivalent model using the known transmit signal
to capture everything between the DAC and ADC [13]. It then
estimates linear and nonlinear components of SI based on the
modeled channel to cancel the known transmitted signal.

Compared to these SI cancellation approaches, FDMonitor
does not know the transmitted signal, and thus we cannot
simply subtract it to estimate the other signal. FDMonitor first
works in the propagation domain with its bidirectional coupler
to enhance isolation between transmitted and incident signals.
However, the isolation is insufficient due to matching across a
very wide band of SDR operation. FDMonitor applies a blind
frequency-domain source separation algorithm in the digital
domain for further signal separation.

B. Spectrum sensing

A shared platform’s transmission could be monitored by
repurposed spectrum sensing. Spectrum sensing [21] was
proposed to sense primary users for opportunistic spectrum
reuse, but it is, in essence, an approach to remotely detect
transmission. Repurposed spectrum sensing can be categorized
as (i) direct sensing and (ii) cooperative sensing.

Direct sensing uses one node to locally sense a user’s
transmission [22]. It can be 1) transmitted signal prior-based
sensing or 2) blind detection. The first type includes likelihood
ratio test [21], cyclostationarity detection [23], waveform
based sensing [24], and matched filtering [25]. These methods
use priors such as signal distributions, cyclostationarity, and
preamble and pilot patterns of the transmitted signals to be cor-
related with the received signal for signal presence detection.
Blind detection, in contrast, does not require a prior [26]. It
includes energy detection (ED) [27] or eigenvalue/covariance
based detection [28]. ED measures the direct energy output
whereas the latter uses the covariance matrix as an indicator
of the received signal strength for presence classification.

Cooperative sensing utilizes measured signals sharing
among collaborative radios to enhance the transmission sens-
ing performance [21]. The spatial distribution of multiple
nodes effectively avoids hidden node problems and ameliorates
degradation due to multipath fading and shadowing [29].
While cooperative sensing can be centralized, distributed, and
cluster-based [30], the fundamental sensing method is still
direct sensing.

The above sensing techniques can be repurposed to monitor
targeted transmissions of the shared SDR platform. However,
it is unrealistic for us to require priors on the transmitted or
incident signals, and blind detection will not be able to reliably
separate co-channel signals. In comparison, FDMonitor can
precisely separate and identify both the transmitted signal
and incident signal, even if they are on the same channel.
It does use two measurements, thus like cooperative methods,
it benefits from redundant measurements.

Bidirectional sensing. The work described in [31] reports
on spectrum monitoring using a bidirectional coupler. That
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Fig. 3: System components and workflow of FDMonitor.

method assumes a known system model for estimating the
transmitted signal. However, system model calibration requires
time-intensive manual effort. Furthermore, weather changes
result in system variations which, if not recalibrated, degrade
the separation performance. Experimentally, we also find the
approach cannot sufficiently separate the transmitted and in-
cident signals when they overlap in the frequency domain. In
comparison to [31], FDMonitor provides several new benefits:
1) it is robust across signal type, carrier frequency, bandwidth,
and transmit power, 2) it enables mixing matrix estimation
on the fly without system calibration, and 3) in addition to
estimating the transmit signal, it also estimates the incident
signal, which enables full-duplex monitoring.

III. SYSTEM DESIGN

We describe the design of FDMonitor, as shown in Fig. 3,
that can separate signals without a signal prior. The inputs
to FDMonitor are the In-phase and Quadrature (I/Q) sampled
signals at the two receiver ports. Whenever the power in either
receiver port is higher than the noise floor, we use the proposed
algorithm to separate the signal into two sources. Given the
Power Spectral Density (PSD) limits defined by the testbed
operator, FDMonitor determines whether a violation occurred
and reacts accordingly.

A. Problem Formulation

The overall goal of FDMonitor is to monitor the entire
frequency range of the platform, in our case 100–6000 MHz.
The monitor samples from one channel at a time, each with an
RF bandwidth limited by the monitoring device capability, in
our case 27.65 MHz. We describe, without loss of generality,
how FDMonitor operates on a single frequency channel.

FDMonitor collects bidimensional samples ri(n) for sample
n = 0, 1, . . . N − 1 from ports i = 0, 1. Upon referring
the source signals as xi(n) with i = 0, 1, we describe the
bidimensional observations of the form:

r(n) = Ax(n) + v(n), (1)

where r(n) = [r0(n), r1(n)]T and v(n) is zero-mean, un-
correlated additive Gaussian noise, i.e., v(n) ∼ CN (0, σ2I).
We now present the assumptions based on (1) and discuss the
major problem that needs to be addressed.

Assumption 1. The observations r(n) are a noisy instan-
taneous linear mixture of source signals from x(n), and the
system matrix A ∈ C2×2 is assumed to be unknown.



Signal mixtures can be instantaneous or convolutive [32],
[33]. We assume the former due to the fact that FDMonitor
collects I/Q samples within hundreds of microseconds, during
which the linear model remains static. We assume no prior
knowledge of the system matrix A because (1) calibration
will not be required, and (2) weather and other changing con-
ditions alter A in practice. Instead, FDMonitor can adaptively
estimate the linear model on the fly.

Assumption 2. Source signals x0(n) and x1(n), for n =
0, 1, . . . N − 1, are mutually independent and unknown. At
most one of the source signals is Gaussian distributed.

As the transmitted and incident signals are from different
sources: the SDR platform and outside world, one signal
does not affect the other, leading to mutual independence.
FDMonitor has no knowledge about the source signals as
their properties are designed by platform users, and may even
be proprietary and confidential. Given that digital signals are
mostly non-Gaussian, assumption 2 holds.

Thus we design FDMonitor to solve the following problem:

Problem. Given Assumptions 1, 2 and the linear model in (1),
the challenge is to estimate transmitted and incident signals
from the received bidimensional measurements only, which is
commonly referred as Blind Source Separation (BSS) for an
instantaneous linear mixture.

B. Frequency-domain ICA Modeling

We introduce a well-known BSS technique, ICA, to address
the problem. ICA approaches, according to [34], are identical
to BSS solutions for instantaneous linear mixtures. They as-
sume the same linear mixture framework as in (1) and require
assumptions 1 and 2. ICA may be applied in either the time
or frequency domain due to the linearity of Fourier transform.
We adopt the frequency-domain ICA given the spectrum
monitoring application of this work. In detail, complex-valued
samples ri(n) for i = 0, 1 are first converted to frequency-
domain components via Discrete Fourier Transform (DFT):

Ri(k) =

N−1∑
n=0

ri(n)e−j
2π
N kn, k = 0, 1, . . . , N − 1. (2)

The linear model in (1) can then be rewritten in the
frequency domain as:

R = AX + V , (3)

where R = [R0, R1]T ∈ C2×N are the DFT components
of raw samples and V in the frequency domain is still
Gaussian distributed, V ∼ CN (0, Nσ2I) [35]. The objective
of frequency-domain ICA is to estimate the system matrix A
and source signals X in (3).

C. ICA for Source Separation

Joint Approximate Diagonalization of Eigen-matrices
(JADE) [36] is selected among three well-known ICA methods
as the source separation algorithm. The three ICA methods,
as applicable to complex-valued signals, are considered in

this work: 1) Fast Independent Component Analysis (FastICA)
[37]; 2) JADE [36]; and 3) Adaptable Complex Maximization
of Nongaussianity (A-CMN) [38]. All three algorithms are
widely used. However, FastICA and A-CMN require some
prior knowledge of the source distribution in order to optimally
choose the contrast function [38]. That prior distribution is not
generally known by testbed operators, who want to accommo-
date as many wireless techniques as possible. As a result, the
more adaptive JADE method is adopted in FDMonitor.

The separated estimates after JADE are X̃ and the mixing
matrix estimate is Ã. Note that X̃ have neither the same
magnitude as that of raw samples nor correct labeling of
“transmitted” vs. “incident” due to two common ICA ambi-
guities we discuss in the next section.

D. Scaling and Permutation Alignment

ICA methods have two common problems: scaling am-
biguities and permutation ambiguities. First, ICA solutions
are scaled by an unknown constant. Second, the two signal
estimates are arbitrarily assigned, thus it is not known which
signal was “transmitted” and which was “incident”. These
ambiguities impose great challenges on violation detection
as FDMonitor does not know which estimate to look at for
violation detection and which for environmental spectrum
monitoring.

Assume that the two ICA estimates are each scaled by a
multiplicative factor and may be permuted (i.e., swapped).
These changes are modeled via the mixing matrix as:

Ã←− ΛÂW , (4)

where Λ is a diagonal scaling matrix. Â is the ultimate mixing
matrix to be obtained, and W is either the 2×2 identity matrix,

or if it is permuted, the 2× 2 exchange matrix J2
∆
=

[
0 1
1 0

]
.

In the next sections, we first recover the scale via the
estimated mixing matrix and address permutation ambiguity
using correlation coefficients and power differences.

1) Scaling Alignment: We observe, from (4), that Ã
having a norm larger than 1 essentially causes the scaling
ambiguity challenge. To recover the scale, we first diagonalize
the mixing matrix Ã to obtain a complex-valued diagonal
matrix ∆(Ã):

∆(Ã) = Diag{Ã}. (5)

The correct power level of the two estimates is then:

X̂(k) = ∆(Ã)X̃(k), k = 0, 1, . . . , N − 1. (6)

2) Permutation Alignment: To simplify the problem, we
first hypothesize the following: “transmitted”←→ X̂0(k), “inci-
dent”←→ X̂1(k). The permutation is incorrect if the hypothesis
is false. As we know that R0(k) from port 0 detects more of
the transmitted signal than port 1 does given by FDMonitor’s
directionality, we first use the Pearson correlation coefficient
[39] to test the hypothesis:

corr(|X̂i|, |R̃j |) =
Cov{|X̂i|, |R̃j |}
σ|X̂i|σ|R̃j |

, i, j = 0, 1, (7)
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Fig. 4: The evaluation metric TTR0→1 is defined as the ratio
between the PSD of X̂0 and X̂1 averaged across the TX
signal’s frequencies ( ). Higher TTR shows better separation
due to more transmit power in X̂0 and much less in X̂1.

where |·| denotes the magnitude of the complex value. Cov{·}
is the covariance and σ is the standard deviation operator,
calculated over all frequency samples k. We then are able to
align the results based on the maximum of the four correlation
values:

î, ĵ = arg max
i,j∈{0,1}

corr(|X̂i|, |R̃j |). (8)

If indices î = ĵ, regardless of the value, we accept the
hypothesis. Otherwise, we multiply X̂ by the exchange matrix
J2 to swap them back.

The above solution applies to all but source signals of
similar power spectra shapes as the correlation coefficients, in
this case, are closely high and hence unreliable. As a result,
we propose to further align permutation via power maximum
between R̃ and X̂ if the correlation coefficients fall out of the
95% confidence interval. Specifically, If R̃0 has more power
than R̃1, X̂0 should correspondingly have higher magnitude
than X̂1. Therefore R̃j and X̂i with higher power are matched.

3) Mixing Matrix Adjustment: Adjustments of the esti-
mated mixing matrix Ã are needed to properly account for
the changes we made for scaling and permutation alignment
above. The final estimated mixing matrix is:

Â = (∆(Ã))−1ÃW (9)

where (∆(Ã))−1 is the scaling recovery matrix and W is the
permutation recovery matrix: if permutation occurs, W = J2,
otherwise it is the 2× 2 identity matrix.

E. Performance evaluation

We propose a new evaluation metric, as shown in Fig. 4, to
quantitatively evaluate FDMonitor’s separation performance.
The principle is that we do not want the algorithm to “blame”
the user for the incident signal, nor do we want to corrupt the
incident signal estimate with the user’s transmitted signal.

To define the metric, we define a frequency channel (set)
BTx to contain frequency indices in which the node is trans-
mitting and set BIn to contain frequency indices in which
there is the incident signal. We compute the average PSDs of
these signals in estimated signals X̂i(k), for i = 0, 1, as:

Pi[Tx] =
1

|BTx|
∑

k∈BTx

|X̂i(k)|2

Pi[In] =
1

|BIn|
∑

k∈BIn

|X̂i(k)|2. (10)
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Fig. 5: The custom Bidirectional coupler. While extremely
wideband and low loss, the isolation between coupled ports
can be as low as 10 dB.

We then define the Transmit in port 0 to Transmit in port 1
Ratio (TTR) and the Incident in port 1 to Incident in port 0
Ratio (IIR) as:

TTR0→1 =
P0[Tx]

P1[Tx]
, IIR1→0 =

P1[In]

P0[In]
. (11)

Similar to the signal-to-interference ratio (SIR), our TTR and
IIR values measure a power ratio. However, TTR and IIR do
not require exact knowledge of the true transmitted and inci-
dent signals X0(k) and X1(k) for all k, which is unavailable,
even during experiments. Our metrics, TTR and IIR, focus
specifically on the isolation performance of FDMonitor rather
than the quality of X̂0(k) and X̂1(k) individually.

IV. IMPLEMENTATION

In this section, we present the implementation of FDMonitor
on our large-scale wireless testbed, POWDER.

A. Monitoring Hardware

We use the following hardware in our experiments: (1)
an SDR transmitter and incidental source each controlled via
USB by an Intel NUC computer, (2) our custom bidirectional
coupler connected between the TX port and antenna, (3)
the monitor node connected to the two output ports of the
bidirectional coupler, and (4) a wide-band antenna

We use a NUC, a small-form-factor PC with an Intel Core
I7-8650 processor and 32 GB of DDR4 RAM, running Ubuntu
18.04 LTS. Our monitor and experimental SDR are both NI
USRP B210s which are able to transmit and receive in the
spectrum range from 70–6000 MHz [40], with a sample rate
up to 61 MSps. The antenna used is a TAOGLAS wide-band
4G LTE I-Bar, effective across a 698-6000 MHz band [41].

A critical component of FDMonitor, a bidirectional coupler,
is designed and built as shown in Fig. 5a and 5b. It has



four ports: P1 and P3 are input and output ports representing
direct transmission whereas P2 and P4 are coupled ports which
can capture mixed signals at different scales. To show the
directionality of the coupler when it is isolated, we measure
its S-parameters across the 100–6000 MHz frequency range,
as shown in Fig. 5c. S11 shows low return loss, below −10
dB across the band. S13 is close to 0 for the wide spectrum,
indicating little power loss of the direct transmit signal from
P1 to P3. In addition, S12 and S14 show that P2 and P4 receive
a copy of the transmitted signal that is at least 10 dB and 20 dB
down from the transmitted power, respectively. Likewise, S32

and S34 show that the samples collected in P4 and P2 are at
least 20 dB and 10 dB down from the incident signal power.

B. Monitoring Software
To monitor the entire 100–6000 MHz range, FDMonitor

divides the spectrum into multiple smaller frequency channels.
Issues with NI USRP B210s sometimes result in invalid sam-
ples when operating at its maximum sampling rate, thus we
use a rate of 27.65 MSps, a factor of 0.9 of its maximum dual-
mode sampling rate. To cover the entire monitoring spectrum,
214 monitoring channels must be iterated through. For the
results here, in each channel, N = 2 × 104 complex-valued
samples are collected by FDMonitor for source separation and
mixing matrix estimation.

The FDMonitor procedure is detailed in Algorithm 1. Note
that PSD limits may be user-dependent, and we assume that
they are known to the algorithm. Our implementation notifies
the user and staff of the problem and automatically shuts off
the transmitter if the violation persists.

V. RESULTS

In this section, experimental results of FDMonitor are
presented using the setup shown in Fig. 2.

Baseline method. We use System Matrix Calibration (SMC)
[31] as a baseline to compare to FDMonitor. SMC works
as follows. SMC first calibrates the system matrix, at each
frequency bin, by placing the system in an RF isolation
chamber. In detail, a known signal is first transmitted by the
experimental SDR and is received by the monitoring system at
two ports. A spectrum analyzer captures the actual transmitted
signal X0. As the incident signal is zero, half of the mixing
matrix can be estimated by comparing the measurements R
and X0. Similarly, by setting X0 = 0 and transmitting a signal
from an incident source (as measured by a spectrum analyzer),
the other half of the mixing matrix is obtained. The calibrated
linear model is then inverted and is used, during operation, for
signal separation and identification.

A. Source Separation of FDMonitor
Our first series of experiments are designed to answer a

critical question: Can FDMonitor separate and identify
transmitted vs. incident signals of different modulations,
center frequencies and bandwidths, and relative power
levels? We conduct multiple controlled experiments, where we
set the transmitted signal and create an environmental signal
that impinges on the platform antenna, to answer this question.

Algorithm 1: Algorithmic Operation of FDMonitor
Result: TX/incident signals, alert notification
Initialize user PSD limits vs. frequency;
Initialize the list of channel center frequencies flist;
while True do

for f in flist do
Sample ri(n) for i = 0, 1 & n = 0 . . . N − 1 ;
Ri(k)← FFT{ri(n), i = 0, 1}; /* III-B */
X̃(k), Ã← JADE{R(k)}; /* III-C */

X̂ ← ∆(Ã)X̃(k);

Â←
(

∆(Ã)
)−1

Ã ; /* Scaling */

if corr(|X̂i|, |R̃m|) > 0.95∀i,m = 0, 1 then
i← arg maxi(|X̂i|, i = 0, 1
; m← arg maxm(|R̃m|), m = 0, 1;

else
i,m← arg maxi,m cor(|X̂i|, |R̃m|);

end
if i 6= m then

X̂(k) = J2 · X̂(k);
Â = J2 · Â; /* Permutation */

end
end
Concatenate X̂(k) for all frequency channels f ;
Compute PSD = 10 log10 |X̂0(k)|2;
if PSD > user PSD limits then

Notify & send PSD graph to user & staff;
end

end

Modulation Types Reference SMC FDMonitor

Transmitted
signals

Incident
signals

TTR
(dB)

IIR
(dB)

TTR
(dB)

IIR
(dB)

TTR
(dB)

IIR
(dB)

CW OFDM 13.30 7.21 30.92 3.54 30.95 19.60
OFDM CW 12.56 6.91 22.61 7.39 29.60 18.14

CW BPSK 13.38 6.02 30.24 4.48 30.26 16.33
BPSK CW 12.55 6.40 20.06 8.32 28.06 18.65

OFDM BPSK 13.12 6.33 22.64 5.60 29.68 16.36
BPSK OFDM 13.17 7.76 20.48 3.85 28.48 19.48

TABLE I: TTR and IIR for signals of three modulation
types. SMC increases signal isolation in CW scenarios only.
FDMonitor provides more isolation across all signal types.

1) Signal Type: An experiment is conducted in which an
OFDM signal is transmitted at 3670 MHz and a BPSK signal
is incident at 3659 MHz. Both have a bandwidth of 4 MHz.
The results in Fig. 6a plot the PSD of R0 and R1 on the left,
showing them at different power levels due to the directionality
of the coupler. The right plots of Fig. 6a show that FDMonitor
enables accurate separation of transmitted and incident signals,
and also correct labeling of the two.

We further compare FDMonitor to SMC with typical digital
signal types, CW, BPSK, and OFDM, using TTR and IIR.
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Fig. 6: FDMonitor’s separation and identification under four RF settings: (a) OFDM transmitted signal and BPSK incident
signal, (b) Overlapping OFDM signals, (c) signals of 10 MHz and 4 MHz bandwidths, and (d) BPSK signals at similar power
levels, -115 and -113 dB. Each row shows the PSDs of raw samples, R0 and R1, and the PSDs of separation estimates, X̂0

and X̂1, all in dB scale. The results present that FDMonitor can accurately and robustly separate and identify transmitted vs.
incident signals of different modulations, carrier frequencies, bandwidths, and relative power levels.
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Fig. 7: TTR(transmit signal separation) and IIR(incident signal separation) comparisons between FDMonitor and SMC. (a)
Receiver’s center frequency: both methods present similar TTR increase, but FDMonitor results in superior IIR. (b) Transmitted
signal bandwidth: FDMonitor is consistent across bandwidths whereas SMC degrades as bandwidth increases. (c) Transmitter
gain: FDMonitor improves both while SMC reduces IIR with the increasing gain.

The results in Table I show that both methods increase the
isolation of the transmitted signal in X̂1. However, we observe
two disadvantages of SMC. First, it can only improve TTR
as much as FDMonitor in CW transmission scenarios. Large
TTR differences in modulated transmitted signals expose the
inability of SMC to remove the transmitted signal from X̂1.
Secondly, SMC shows only a small IIR increase when the
incident signal is CW, but inadvertently reduces the isolation
for other signals.

2) Carrier and Center Frequency: Can FDMonitor sepa-
rate signals that overlap in the frequency domain? We experi-

ment with two overlapping OFDM signals: an incident signal
(5758–5762 MHz) and a transmitted signal (5756–5760 MHz)
that overlap between 5758–5760 MHz. The separation results
in Fig. 6b show the complete removal of the incident signal
from X̂0, and the complete removal of the transmitted signal
from X̂1. Furthermore, our experience indicates that FDMon-
itor can separate signals that fully overlap in the frequency
domain as long as the modulations are sufficiently different.

To check the separation performance across center fre-
quency at the FDMonitor, experiments are conducted in the



2.4 GHz and 5.8 GHz ISM and 3.6 GHz CBRS bands, while
transmitting non-overlapping CW signals. Fig. 7a shows that
both methods increase the TTR across frequency, which means
little impact of center frequency on either algorithm. However,
the large difference shown in IIR indicates poor incident signal
separation of SMC and robust estimation via FDMonitor.

3) Signal Bandwidth: The transmitted and incident signal
properties are unknown to FDMonitor, and might both occupy
large bandwidths. We next run tests to explore how the
performance of FDMonitor is affected by signal bandwidth.

The experiment considers two OFDM signals: the transmit-
ted signal is 10 MHz wide, centered at 2454 MHz, while the
incident signal is at 2442 MHz with 4 MHz bandwidth. Fig. 6c
shows the incident signal is removed from X̂0. Equivalently,
the transmitted signal has been mostly eliminated in X̂1.
Notably, 4 dB of the edges of the transmitted signal remains in
X̂1. Additionally, the spike at 2458 MHz was verified to be an
environmental interference signal. This observation indicates
that FDMonitor can perform source separation in the presence
of multiple incident signals.

Fig. 7b shows how TTR and IIR change as the transmitted
signal bandwidth varies from 1 to 10 MHz (10 MHz is the
maximum bandwidth a user can reserve for one experiment
on the POWDER testbed). FDMonitor is stable across band-
widths, but SMC demonstrates decreasing TTR with higher
bandwidth. Additionally, the IIR for SMC is stable but much
lower than the IIR reference, whereas FDMonitor produces
higher IIRs. Reduced IIR means there is a higher level of the
incident signal in X̂0 than in R0, a negative result.

4) Signal Power: Power difference is used for solving the
permutation ambiguity (Section III-D). However, close power
levels, in theory, could confuse FDMonitor. Thus, we present
FDMonitor’s performance as a function of signal power.

Fig. 6d shows the separation of two BPSK signals at
close power levels, with the transmitted signal centered at
3575 MHz and the incident signal centered at 3580 MHz.
As the transmitted signal gain is low, it is nearly invisible
in the PSD of R1(k). Despite the low power transmitted
signal, the results show that FDMonitor accurately estimates
and identifies each signal.

Finally, we change the transmitter gain for separation per-
formance evaluation, as shown in Fig. 7c. The TTR and IIR
reference are approximately 6 and 4 dB. After running SMC
and FDMonitor, we make the following observations: (1) TTR
for both methods increases while gain increases from 10 to
55 dB; (2) FDMonitor obtains higher TTR than SMC at each
gain setting; (3) SMC provides IIR around 2–3 dB lower than
the reference while FDMonitor increases IIR by 7-16 dB.

B. Algorithm Efficiency

We compare the two systems’ efficiency via latency. Latency
in our work refers to the elapsed time for frequency tuning,
data collection, and further analysis. Wideband monitoring of
RF transmissions involves two main components, frequency
sweeping and source separation. The former tunes the center
frequency of the receiver while the latter provides transmitted
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Fig. 8: Latency of FDMonitor and SMC of one channel.
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Fig. 9: Mixing matrix magnitude over 105 hrs, with precipita-
tion data. The magnitudes of matrix values are stable, but a12

& a21 change while surfaces are wet due to rain.

signal estimation in each 27.65 MHz channel. To assess the
methods in terms of efficiency, latency is measured in each
monitoring channel. Fig. 8 shows that, for monitoring one
channel, the median latency of FDMonitor is 0.17 s whereas
SMC requires 0.32 s. Given the median latency, the total time
spent by FDMonitor to sweep the 100-6000 MHz spectrum is
36.4 s, half the latency of SMC.

C. Mixing Matrix Evaluation

We further evaluate the system performance via the mixing
matrix Â ∈ C2×2, which describes the linear system model
for source separation, which is estimated on the fly. We
collect mixing matrix and precipitation data for 29 days while
continuously transmitting CW signals from both sources.

Fig. 9 shows the mixing matrix magnitude vs. precipitation
and monitoring hours. First, we observe that the matrix mag-
nitude is relatively stable across 29 days. Both a11 and a22 are
centered at 0.01 dB with 0.002 dB standard deviation. Noisier
a12 and a21 are around -19.29 and -7.10 dB respectively with
0.094 and 0.075 dB standard deviation. Additionally, we notice
that the matrix varies with rainfall. At around 72, 187 and 348
hours, the magnitude of a12 and a21 decreases when rain starts
and later goes back to the same pre-rain level. This can be
explained by the change in the radio propagation environment
for wet vs. dry surfaces [42]. This is another reason why the
baseline SMC method, which learns the system matrix only
once during calibration, is not robust compared to FDMonitor.

D. Adversarial Behavior

If FDMonitor sequentially monitors frequency channels
to cover the entire 100-6000 MHz band, adversarial users



Type False positives: 45 emails True positives: 944 emails

Rate False discovery rate (FDR): 4.6% Positive predictive value (PPV): 95.4%

Cause Bug: Spectrum
declaration lost

Permutation
ambiguity

No spectrum declaration/
TX-declaration mismatch

High gain induced
harmonics

Signal
spillover

Intermodulation
distortions

System
testing

Rate 62.2% 37.8% 58.2% 23.0% 0.8% 13.1% 4.9%

TABLE II: FDMonitor alert accuracy during continuous monitoring of 19 shared SDR platforms for 27 months since 2021.
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Fig. 10: Probability of detecting violation in the first cycle.

can potentially transmit in violation while hopping between
channels to avoid detection. To model adversarial behaviors,
we use the following notation: 1) ∆T is the time duration to
monitor one channel, 2) NC is the total number of channels
(in our case, 214), and 3) T denotes the cycle number, where
each cycle corresponds to monitoring all NC channels.

Attack model We propose the following attack model: 1)
an attacker can use any channel at any given time, 2) in each
time slot ∆T , an attacker chooses 1 of the NC channels to
transmit, 3) an attacker does not know which channel is being
monitored.

Countermeasure To address this attack model, FDMonitor
can no longer use a predictable monitoring scheme. Instead,
we propose a countermeasure that randomizes the order: 1)
in each monitoring cycle, FDMonitor generates a random
permuted channel sequence of length NC for spectrum mon-
itoring, 3) all channels are measured by FDMonitor in each
cycle. The probability of first detecting an attacker at cycle T
using the proposed countermeasure is:

PD(T ) =

(
NC − 1

NC

)NC(T−1)
[

1−
(
NC − 1

NC

)NC
]
. (12)

PD(1) asymptotically converges to 1 − 1
e or 63% as NC →

∞. The average number of cycles for attacker detection is
1/PD(1), which for high NC is 1.58 cycles. The proof is
omitted due to space constraints. For validation, we show in
Fig. 10 results of a simulation run 104 times at each NC . In
FDMonitor, NC = 214, and thus PD(1) = 65.18%.

We describe one attack model above and will investigate
more adversarial behaviors in our future work.

E. System-wide 27-Month Deployment

FDMonitor has been continuously monitoring 19 SDR plat-
forms on the testbed, all deployed at different geographical
locations, for 27 months since 2021. We evaluate its system-
wide performance by investigating each violation alarm it

generates during the period, and considering the alarm accu-
racy. A violation alarm notifies the user via email of detected
signals being transmitted outside the declared spectrum. It
can be a true detection of RF emission misbehavior, or a
false alarm if the alert did not correspond to a user violating
spectrum rules. We store measurements from each alert and
request information from the user about their setup in order
to determine the ground truth about spectrum use.

Table II shows our analysis of the 989 total alerts. In
summary, we observe only 45 false alarms, among which
28 alerts occurred because the user-declared frequency was,
due to a software error, not recorded to the FDMonitor user
PSD limits database. The other 17 false discovery emails were
triggered by incorrectly resolved permutation ambiguities.
Even so, the 95.4% positive predictive value (PPV) represents
high accuracy and robustness of FDMonitor across a large
variety of real users, their signals, and the varying weather
seen by the platform.

No false negative cases (when a user’s violating transmis-
sion is not detected as a violation) have been reported by
POWDER users, and there were no false negatives in our
experimental violation tests. Future work should investigate
other methods to quantify the false negative rate during normal
user operation.

Finally, we note that FDMonitor ran about 1.9 million times
in the 27 months. 45 false discoveries in this period correspond
to a false alarm rate of approximately 2× 10−5.

VI. DISCUSSION

We describe some limitations of FDMonitor and discuss the
implications for future research.

Non-Gaussian constraint. One constraint of FDMonitor is
Assumption 2 that at most one of the sources is Gaussian.
One possible solution is that, if both signals are found to be
Gaussian, FDMonitor could use a recently estimated system
matrix Â for separation instead of estimating it on the fly.

Generalization to MIMO platforms. Currently one FDMon-
itor is needed for each transmit antenna as it relies on a
bidirectional coupler to separate the transmit and incident
signal to that antenna. This could be a scaling problem for
MIMO platforms. However, future work could use a (N + 1)-
directional coupler for monitoring N -antenna MIMO plat-
forms assuming that the incident signal appears in different
linear combinations on all antennas. By doing so, N+1 rather
than 2N inputs would be needed for MIMO separation.



VII. CONCLUSION

This paper proposes, implements, and reports on FDMon-
itor, a robust and continuous full-duplex monitoring system
for effective supervision of 19 SDR platforms’ transmissions
and environmental use of spectrum. FDMonitor uses a new
frequency-domain source separation algorithm to distinguish
signals of the SDR platform from those incident on the
antenna. Critically, our approach does not require extensive
calibration, which would be very challenging to implement at
the rate at which calibration becomes obsolete. Its performance
is extensively validated with four different types of RF signal
experiments, across communication signal modulations, carrier
frequency, bandwidth, and transmit power. We further validate
27 months of live system performance, which generates a low
4.6% FDR, with 45 false alerts.
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