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Abstract

Future wireless networks that share spectrum dynamically among groups of mobile users will
require fast and accurate channel estimation in order to guarantee varying signal-to-interference-
plus-noise ratio (SINR) requirements for co-channel links. There is a need for channel models with
low computational complexity and high accuracy that adapt to the particular area of deployment
while preserving explainability. In this work, we propose the Channel Estimation via Loss Field
(CELF) model, which augments existing channel models using channel loss measurements from
a deployed network and a Bayesian linear regression method to estimate a site-specific loss field
for the area. The loss field is explainable as a site map of additional radio ‘shadowing’, compared
to the channel base model, but it requires no site-specific terrain or building information. For an
arbitrary pair of transmitter and receiver positions, CELF sums the loss field near the link line
to estimate its shadowing loss. We use extensive indoor and outdoor measurements to show that
CELF lowers the modeling error variance of the log-distance path loss base model by up to 68%
for prediction, and outperforms 3 popular Machine Learning (ML) methods in variance reduction
and training efficiency. To validate CELF’s robustness, it is applied to a different channel base
model, the terrain-integrated rough earth model (TIREM), and numerical results show that CELF
can reduce the test variance by up to 63%. We further discuss two spatial multipath models for
a weight matrix in CELF and observe similar accuracy improvement. To summarize, CELF offers
a new type of explainable learning model for accurate and fast site-specific radio channel loss
estimation.

Keywords: dynamic spectrum management, channel modeling, shadowing prediction, mobile
networks

1. Introduction

Spectrum allocation is becoming increasingly dynamic and shareable in order to meet the
growing demand [Il 2]. Examples include the citizens broadband radio service (CBRS) band [3]
and the radio dynamic zone [4, [5]. A major part of the challenge to achieve reliable dynamic
spectrum allocation is to accurately and efficiently predict signal and interference powers between
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Figure 1: Assigning channels and transmit powers to ensure the required SINRs among links between T' transmitters
(TX) and R receivers (RX) demands RT' co-channel channel loss estimation and recomputation as users move.

all pairs of proximate mobile transmitters and receivers, as shown in Fig.[I] to ensure that signal-
to-interference-plus-noise ratios (SINRs) are sufficient for all groups.

Current channel models are not well-matched to the needs of dynamic spectrum management
in mobile networks. Many path loss prediction models require the computation of multiple propa-
gation loss mechanisms such as reflection and diffraction in the particular geometry of the network
deployment area. For example, the terrain-integrated rough earth model (TIREM) [6] computes
diffraction losses based on the terrain features and building heights extracted for each transmit-
ter and receiver pair. Ray tracing models [7] additionally require high-resolution environmental
databases and are highly computationally complex. Such site-specific models have high accuracy
compared to general-purpose models that curve-fit to empirical data, such as Okumura-Hata [§]
and log-distance path loss [9]. However, if real-time dynamic spectrum management requires high-
resolution site clutter data and significant computational and memory resources, it will limit who
can perform this management [10].

Emerging machine learning (ML) channel models can be both accurate and fast during test-
ing but require very large datasets and computational resources during model training [11], [12].
Further, ML models suffer from the black-box problem, in which no human-understandable ex-
planation or reasoning for their predictions is possible [I3]. This prevents system engineers from
diagnosing problems when a model performs poorly. Updating an ML channel model over time
does not allow engineers to explain how (or if) the model has been impacted by changes in the
environment, e.g., a new building. Current and future regulations may require model explana-
tions for legal purposes [14] — if a system is harmed by path loss prediction model errors, a
human-understandable explanation must be provided.

In this paper, we develop and validate a new type of channel learning model, Channel Estima-
tion via Loss Field (CELF), which is simultaneously explainable, is less computationally complex
to train, and is more accurate than current ML channel models trained with the same data. CELF
formulates modeling errors after an arbitrary channel base model as a linear function of a shad-
owing loss field. This loss field is connected to the underlying wave propagation physics in that
it accounts for the physical mechanism of shadowing due to obstacles in the spatial domain, and
is viewable as a simple image map. A long history of radio propagation research has applied this
linear additive loss modeling to estimate particular objects [15] or image motion [16]. However, we
are unaware of any work using it as a foundation for a site-agnostic learning-based channel model.
As shown in Fig. [2| the loss field is learned from training measurements via Bayesian linear regres-
sion, but training is lower in computation requirements compared to a general-purpose ML model.
Using training measurements allows the model to fit the particular site of deployment. Sensors
deployed as part of a radio dynamic zone, or the dynamic spectrum access protocol, can be used
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to collect these measurements. Training data quantities can be low in comparison with other ML
methods. We also discuss Bayesian regression’s stability and optimization for more robust and
efficient learning of the loss field. To predict shadowing loss for a new link, CELF computes a
weighted sum of a small number of pixels of the learned loss field image. The implementation of
CELF is at [17].

We use one indoor and three outdoor datasets to experimentally quantify how accurately and
efficiently CELF performs. We compare CELF with three general-purpose ML channel models:
support vector regression (SVR), random forests, and multi-layer perceptron (MLP)-ANN, in
terms of (1) variance reduction compared to a channel base model, (2) training efficiency and
(3) prediction efficiency. CELF reduces the variance of modeling errors on the test dataset by
up to 68% outdoors and 40% indoors. In comparison to other methods, CELF achieves larger
test variance reductions. The MLP-ANN model is the most accurate model out of the three ML
methods, but it requires three times more time than CELF for model training. For loss prediction,
CELF is faster than SVR but slower than MLP-ANN as the test dataset size and the loss field size
impact CELF’s prediction efficiency.

We comprehensively explore CELF’s accuracy improvement for two different channel base
models and two different weight matrix models. First, CELF should, regardless of the base model,
be able to learn a loss field from the modeling errors and improve the shadowing predictions. In this
work, we include the popular log-distance path loss [9] and TIREM [6] to verify the robustness of
CELF. Results show that CELF reduces the log-distance path loss model variance by up to 68% and
reduces TIREM variance by up to 63% across all test datasets. Second, a weight model represents
the geometric shape near and between the transmitter and receiver for which the spatial loss field
has an impact on the link loss. Different weight matrix models formulate different multipath
environments, e.g., ellipse for reflected multipath [I8], [16] and Cassini oval for scattered multipath
[19, 20]. We hence incorporate the ellipse and Cassini oval models in CELF for comparison.
Numerical results show that both models are valid weight matrix models and
accuracy improvement on the test datasets.

For perspective, path loss models that have no fine-grained site-specific information do not
predict small-scale fading effects, i.e., those caused by sub-wavelength (cm-level) changes in the
position of the transmitter or receiver. Small-scale fading is severe, e.g., more than 20 dB below
the mean power 1% of the time in a Rayleigh fading channel [9]. Path loss models do not know
the device and environmental obstruction positions to the required level of accuracy. Instead,
channel path loss models, like our proposed CELF, predict large-scale fading (caused by increasing
distance) and medium-scale or shadow fading (caused by obstructions) [2I]. Since training and
testing measurements include small-scale fading which our model cannot predict, we cannot reduce



the path loss variance to zero. Instead, we judge models by how much they can reduce fading
variance compared to a standard statistical channel model. We find that CELF shows larger
variance reductions across all of our experiments than any other model, ML or otherwise.

The initial work of CELF appeared at IEEE DySPAN 2024 P2]. The major additional contri-
butions in comparison to are as follows: (1) A hybrid empirical /physical model, the terrain-
integrated rough earth model (TTIREM), is included as a different channel base model. The analysis
verifies that CELF can robustly improve the accuracy of various channel models. (2) Two spatial
multipath models for a weight matrix in CELF are presented to discuss different geometric shapes
for which the spatial loss field contributes to the link loss. Numerical results validate both spatial
models and they result in similar accuracy improvements. (3) Two more real-world datasets, one
collected in a shared frequency band and the other from a large urban environment, are experimen-
tally analyzed to evaluate CELF’s accuracy and efficiency performance under the new scenarios.
(4) We provide a detailed discussion on the explainability of CELF modeling and the learned loss
field. Numerical tests verify that the increase in the loss field near known obstructions is statis-
tically more significant in both indoor and outdoor environments, and hence the loss field can be
explained by the locations of the obstructions in the area.

2. Related Work

Path loss prediction has an extensive disciplinary history over several decades. Models used
today rely on [22]:

1. the physical mechanisms of radio propagation, e.g., reflection and diffraction;
2. information about the site, e.g., terrain and building geometry data;
3. curve-fitting of empirical measurements recorded in a different area;

4. fitting or learning using empirical data collected in the area of deployment.

2.1. Physics-based models

Physics-based models aim to accurately characterize radio wave propagation effects such as
reflection and diffraction. The most fundamental is the free-space path loss model [9], but it
models only unobstructed channels, and is thus limited to satellite or deep space communication
and unobstructed microwave relay links. The two-ray ground reflection model accounts for both
the line-of-sight (LOS) and the ground-reflected paths [23], and is typically used in flat clutter-free
areas like plains [24]. When more multipath must be modeled, ray tracing is a highly accurate
but highly computationally complex model for path loss [7]. Ray tracing requires site-specific
building databases, i.e., building layout, heights, and dielectric properties, as well as detailed
terrain and ground use data, so that each wave path can be traced using geometrical optics [25].
Its computational complexity and need for high-resolution site-specific data make it impractical
for large-scale, real-time applications.



2.2. General empirical models

General empirical models are based on an analysis of measurements taken from an environment
similar in use to the area of interest, e.g., urban or suburban. The Okumura-Hata model is based
on measurements from Tokyo in the 1960s as formulated by Hata [8]. It uses curve-fitting to
model the effect of signal frequency, antenna heights, path length, and environment type on the
channel loss. The COST-231 Hata model extends the Okumura-Hata model to data from some
European cities [26]. The benefits of statistical models are the simple closed-form formula and
no need for data from the site of interest. However, they are restricted to certain frequency and
distance ranges, and most critically, they are most accurate in the environments from which the
measurements are sourced [24].

2.8. Hybrid empirical/physical models

The Longley-Rice model, also known as the irregular terrain model (ITM), combines empir-
ical modeling and physical principles for ground reflection, knife-edge and far-field diffraction,
and troposcatter predictions [27]. This model considers environmental factors including surface
refractivity, ground conductivity, atmospheric parameters, and terrain irregularities for path loss
prediction [7]. It is in use today in systems like Spectrum Access System (SAS) [28]. The TIREM
model [6] considers a profile of the terrain features and building heights [29]. The last hybrid
model is the International Telecommunication Union’s (ITU)-R P.1812 model, which uses detailed
terrain profiles to target path-specific predictions. It has been widely used for terrestrial wireless
systems [30].

2.4. Statistical models

Statistical models characterize the statistical distribution of the channel losses, rather than
only the average value. The most common model is the log-normal shadowing model, which models
shadowing loss as normally distributed in dB [24]. Other models explain the statistical correlation
between the shadowing loss on two proximate links [31], 82 [33], which become correlated by passing
through the same or similar obstructions. CELF models this correlation implicitly via its loss field.
Other distributions for shadowing include the Gamma [34] and inverse Gamma [35] distributions.
We note that the most well-known distributions, Rayleigh and Rician, are models for small-scale
fading loss, and are thus not further discussed in this paper.

2.5. ML channel models

Machine Learning (ML) channel models are designed using general-purpose ML architectures
and extensive datasets [11, [36] [37]. We categorize these models as: (1) SVR, K-Nearest-Neighbors
(KNN), and ensemble learning methods such as random forests [37]; (2) Artificial Neural Networks
(ANN) models including MLP-ANN models 38}, 39] and radial basis function-ANN models (RBF-
ANN) [40], and (3) more complex DNN models [12] [41]. For example, the RadioUNet model in
[12] utilizes large datasets and environmental geometry as input to Unet, a special Convoluted
Neural Network (CNN) architecture for path loss modeling.

ML channel methods can provide higher prediction accuracy than the aforementioned models at
the cost of extensive datasets or detailed environmental information. Additionally, the high com-
plexity of model training and updating will result in significant latency. The lack of interpretability
of ML methods is a particular challenge, as RF engineers can find it difficult to diagnose a problem



when the model performs poorly. Further, regulation increasingly requires businesses to be able
to explain why an algorithm’s prediction was made [14].

CELF is also a learning-based model which uses site measurements to train. It requires no
knowledge about the environment and can be trained with fewer measurements than a general-
purpose ML model. Further,

3. Channel Estimation via Loss Field

In this section, we present the CELF model in three parts. First, we describe the idea of a base
model, and describe what is used in this paper. Next, we describe how CELF augments the base
model for better path loss estimation using a spatial loss field. Finally, we explain how to estimate
the loss field from training measurements.

3.1. First-order channel estimation

CELF predicts the additional path loss compared to a channel base model. The channel base
model could be any model described in the related work (Section [2). CELF’s role is to augment
the estimates from the base model by additionally accounting for the natural spatial correlations
in the path loss that are not modeled by the base model. To verify the effectiveness of CELF, we
explore two different models in this paper as the base model: log-distance path loss and TIREM.

Log-distance path loss model. It states that the received power estimate in dBm P(d;)
along a link [ = (4, 7) between node i and node j reduces in a logarithmic manner with increasing
distance [9]:

. d
P(d)) = Pp — 11y — 10n, log A_lo’ (1)

where Py is the transmitted power in dBm, d; is the link distance, I1j is a constant specifying the dB
loss at a reference distance Ay, and the path loss exponent n, indicates the level of environmental
clutter.

Civen the same distance d;, the received power measurements vary around the estimate P(d;)
due to shadow fading and small-scale fading [24]. As a result, the modeling errors between the
measurement P(d;) and the estimate P(d;) can be written as:

Zl,log—dist, = P(dl> - P(dl)7 (2)

where Z; jog.dist. is the modeling error which consists of independent shadowing loss and small-scale
fading loss [16].

TIREM. The second model, TIREM, is an extension of the widely-applied Longley-Rice
model. It utilizes site-specific terrain features and electromagnetic theory to estimate path loss for
frequencies between 1 MHz - 1 THz and distances up to 30 km [6]. One disadvantage, however, is
that it over-predicts shadowing loss as obstacles are assumed to be infinitely long knife edges [29].
We denote the difference between the received power measurements and the TTIREM estimates as:

Z] TIREM = pTIREM(dl) — P(d)), (3)

where JBTIREM(dZ) is the estimated power given by TIREM, and Z; tiggnm. is the over-prediction
error. To simplify the notation used throughout the rest of this paper, Z; is used to represent the
total modeling error by any arbitrary base model.



3.2. Network shadowing model for shadowing correlation

The total modeling error Z; is commonly modeled as independent and identically distributed
(1.i.d.) across links [42] 43| 44]. However, that simplification disagrees with the empirical ob-
servation that shadowing losses along two links are correlated due to obstructions, e.g., outdoor
buildings and terrain variations, and indoor walls and furniture [45], 146, [32].

In order to simultaneously model the correlations in shadow fading that exist across multiple
link pairs in a network, we use the network shadowing model [47]. Let £ be a set of link pairs in
a wireless network, and L = |£| where | - | counts the number of elements in the set. We assume
that each link is different in either transmitter or receiver location from the other links in the set
L. The network shadowing model describes the joint link modeling error as:

z=Wp+n, (4)

where 2z = [Z,Zy,...,Z1]7 € RY*! is the total modeling error after the channel base model,
W € REM ig a weight matrix, p € R™*! is a discretized loss field in dB, and n € R¥*! is the
linear model error. Their details are given below.

Spatial loss field p. The spatial loss field of [47, [46] characterizes the environment of interest
as a Gaussian random field in dB that is isotropic wide-sense stationary. It has zero mean and an
exponentially decaying spatial covariance function:

Og

A 2 dm,n
Cytmn) 2 % exp (-2, )

where d,, ,, is the Euclidean distance between the centers of pixels m and n, 0% is the variance of
the shadowing loss, and ¢ is a space constant.The modeling error Z; on link [ is then a weighted
sum of the loss field p over the pixels that cross near the link [.

Weight matrix model for W. A weight matrix model formulates a spatial area near the link
which has a non-zero contribution to the variation in modeling errors. In this paper, we consider
a popular ellipse model [16] and a Cassini oval model [19] for the weight matrix W. The rationale
is that these two models can theoretically describe reflection- and scattering-dominant modeling
errors, respectively [1§].

The ellipse model, as shown in Fig. considers the two ends ¢ and j of link [ as the foci and
utilizes a tunable parameter Agpipse to determine the ellipse width. A pixel is viewed as valid if it
falls within the ellipse, and the corresponding weight in W will have a non-zero contribution to
the shadowing loss of link [. Past studies [47, [46] [16] construct the weight as:

m,ellipse — ~ 5 5 6
Wimellipse = 7= (6)

where d; ,,, and d;,,, are the distances from the center of pixel m to the two foci ¢ and j, d; is the
link distance, and Aenipse is the ellipse width parameter.

The Cassini oval model, as shown in Fig. [3D] has the same transmitter and receiver of link !
as the foci and uses Acassini to decide the oval shape. The weights of the Cassini oval model are
constructed as:

0, otherwise

1 {17 lf di,m + dj,m < dl + >\ellipse

: (7)

1 1, if 4d17md],m/dl2 < )\Cassini
Wim,Cassini — ~— =
b C Vd; |0, otherwise
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Figure 3: The two weight model for selecting pixels (e) that contribute to the shadowing loss of link I = (3, ).
Pixels in white have zero weight; pixels in light green have constant positive weight as given in @ and .

The total modeling error z. The total modeling error is the sum of errors from multiple
sources: 1) shadow fading, 2) small-scale fading, and 3) measurement error due to thermal noise,
which are independent of each other. The distribution for shadow fading, according to the lin-
ear additive loss field modeling, is spatially correlated Gaussian in dB. We can also assume the
measurement error due to thermal noise to be 7.i.d. normally distributed in dB scale. For the last
small-scale fading, while Rayleigh and Rician are the common models, the sum of all these errors
can presumably be Gaussian in dB, according to the Central Limit Theorem [4§].

3.3. Loss field learning

Bayesian linear regression. Given the linear joint link model in and the Gaussian loss
field prior, we reconstruct the loss field p via Bayesian linear regression. We note the likelihood
function of the total modeling error vector is,

fIW,p, 0727) = N<Wp7 U%IL)v (8)

where N (Wp, a%] 1) is a Gaussian distribution with a mean of Wp and a covariance of 0,27] . Next,
the loss field prior is modeled as a Gaussian distribution,

f(p) = N(O> Cp)v (9>

where C), is the covariance matrix formed by . Therefore the posterior pdf of p is multivariate
Gaussian as
f(p|z,W, 02) :N(H’MZ?CMZ)’ (1())
where 2( _—2vp/T =111/ T
pple = 0, (0, " WIW + CJ) 7 Wz,
C’p|z = (UJZWTW + Cp_l)_l.
As a result, we can acquire the maximum a posterior (MAP) estimator p as the posterior mean

Hplz in "
Solution stability. The linear regression problem posed in , however, is an ill-posed
problem and/or may not exist due to two main factors:

(11)

8



1. L < M: there are more pixels to be estimated than link measurements, thus the problem is
underdetermined;

2. L > M but with a sparse W: only a few pixels are assigned non-zero weights for each link
and thus W is rank-deficient regardless of the number of link samples.

For a stable solution, the regularization constant « is introduced such that the estimator p is

expressed as:
]3 = ]._.[12
I = (WW +aC) ) 'WT,

where o, is considered in «. In doing so, the estimator is robust to rank deficiency in the weight
matrix, and the inverse term in the operator II; always exists.

Solution efficiency. Latency can be the other concern given large datasets and wide area
estimation, and thus requires efficiency improvement. If L. < M, we can review the problem as
sparse linear regression and adopt the minimum norm estimator (MNE) as:

(12)

ﬁ:HQZ

13
I, = C,WT(WC,W' +al)™, (13)

which calculates an inverse of only a smaller matrix of size R¥*" rather than R¥*M. Note that
the inverse of a larger matrix is more computationally complex, i.e., requiring O(M?) work [49].

If L > M, we leverage the Cholesky decomposition [50] to lower the latency. It is based on the
fact that (W'W + aC; ') in II; is symmetric and positive definite. Let A = WTW + aC,!, and
b= W7z We first calculate the triangular matrix S via the Cholesky factorization:

SST =A, S =cholA. (14)

By reformulating the problem as SSTp = b, the loss field estimate p can be obtained via
forward-backward substitution. According to [51], the Cholesky decomposition can be twice as
efficient as the general LU decomposition.

3.4. Explainable learning Method

Explainability is a significant feature of CELF as it provides reasoning for the learning model
construction and contextualization for the learning goal, loss field, both in a human-understandable
manner. In contrast, ML techniques especially deep learning models are often black-box solutions
that can easily suffer from problem diagnosis [52] and adversarial attacks [53]. As a result, CELF
as an explainable learning approach can greatly enhance engineers’ and regulators’ trust in the
channel model [54].

CELF embraces explainability in two aspects: model design and model output. For the model
design, we first adopt an inherently explainable linear model to describe the additive relation
between link modeling errors and the spatial loss field [B4]. Second, a Gaussian random field with
an exponential kernel as the loss field prior can be justified by the fact that (1) shadow fading is
commonly modeled and experimentally verified as Gaussian in dB [@ 24], and (2) shadowing loss
due to obstructions across space experiences a distance-based decay [@]. For the model output,
we show in Section that the spatial loss field can be explained via the physical mechanism
of shadowing due to obstacles and can further be numerically validated when the locations of
obstructions in the area are known. Such explainability enables a closer tie between a digital
spectrum twin and the real environment it is meant to represent [G5].

9



Table 1: Specifications for the indoor and three outdoor datasets. Note that the outdoor SLC1 dataset, due to

Dataset Indoor SLC1 SLC2 ANTW
Freq. (MHz) 2443 462.7 3543 868
Area 17.5 x 15 (m?) 2.2 x 2.1 (km?) 2.2 x 2.1 (km?) 4.1 x 5.6 (km?)
Sample Size 9,460 59,323 84,682 162,568
TX Power 10 mW 1W 1W unknown

uncalibrated receivers, is treated as 4 different subdatasets.
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Figure 4: The transmitter and receiver locations of the indoor and outdoor received power datasets. The cubicles
(+) in the indoor office and the outdoor environment are also plotted as a reference.

4. Evaluation Methodology

In this section, we describe one indoor and three outdoor real-world received power datasets.
The system-related details of each dataset are provided in Table [[ Commonly used methods for
channel estimation are presented next including one empirical and three ML-based methods. We
describe in the end two evaluation metrics for assessing the performance of the CELF algorithm.

4.1. Real-world received power datasets

Indoor Dataset. This dataset [56] is from in an indoor office area, a 17.5 x 15 m? space
surrounded by 1.8 m high cubicle walls, as shown in Fig. [da] Channels between all pairs of 44
device locations are measured in sequence by transmitting a pseudo-noise code with a 40 MHz chip
rate at 2443 MHz. The transmit power is 10 mW. By repeating sample collection for each link 5
times, this indoor dataset has in total 44 x 43 x 5 = 9460 measurements, as described in [57].
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Dataset Receiver  Count SDR Antenna Height  Samples

(m)

Rooftop 5 X310 20-40 13114

SLC1 legd 12 B210 1.5 24253
Mobile 7 B210 2.0 8688

Dense 5 B210 8.8 13268

Table 2: The 4 subdataset under the SLC1 outdoor datasets due to uncalibrated receivers.

SLC1 Outdoor Dataset. The first set of measurements [58] is collected from a 2.2 x 2.1
km? university campus area in Salt Lake City (SLC). A portable commercial radio is used as the
transmitter, and the receivers are 25 software-defined radio (SDR) nodes with omnidirectional an-
tennas deployed on POWDER, an open wireless experimental testbed [59]. The carrier frequency is
462.7 MHz and the transmit power is 1W. The receivers are one of 4 types, Rooftop, Fized, Mobile,
and Dense, according to the radio-antenna-placement differentiation. Table 2] gives specifications
for each receiver type. Fig. [4b] and [d show the GPS coordinates of the transmitter and all the
receivers on the campus map. As the four types of receivers are heterogeneous and uncalibrated,
this work treats the data collected by each type as a separate dataset.

SLC2 Outdoor Dataset. The second dataset [60] is collected on the same 2.2 x 2.1 km?
University of Utah campus in SLC. However, it differs from the SLC1 outdoor dataset in that the
center frequency is 3534 MHz which is in the CBRS band for shared spectrum use. Including this
dataset helps evaluate how precisely and efficiently CELF can perform in the real-world dynamic
spectrum sharing scenario. According to [60], the SLC2 outdoor dataset uses 5 Dense nodes on
POWDER to transmit a continuous wave (CW) signal at 1W transmit power while a portable
SDR receiver is carried by walk and driving for sample collection. The transmitter and receiver
locations are shown in Fig. [4d]

ANTW Outdoor Dataset. The last outdoor dataset [61] is the largest in terms of data size
and coverage area. The measurements are taken in the city center of Antwerp (ANTW), Belgium
by stationary cell towers. The mobile transmitters are carried by Antwerp’s postal service vehicles
while transmitting LoRaWAN messages at 868 MHz. The intention of adding this dataset is to
evaluate CELF in a large urban area. Fig. [de| presents the 11 stationary receivers and the GPS
coordinates of the mobile transmitter.

Train-Test Split. Each dataset needs to be split without overlapping for loss field estimation
(training) and shadowing loss prediction (testing) purposes. We choose the link index as the
criterion to partition the datasets. Each dataset is split with a 7:3 ratio. Each data point is
randomly assigned for training or testing.

4.2. Methods for comparison

We adopt three general-purpose ML models, Random Forest, SVR, and MLP-ANN, in this
work for performance comparisons. The rationale behind such choices is that they require neither
site-specific terrain information nor large-scale datasets, unlike complex deep learning models such
as RadioUNet [12] and PL-GAN [62]. They have also been widely used as benchmarks for path
loss prediction [24] [63], 37, [38].
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e Random Forest [64]: it is an ensemble learning approach that first constructs multiple deci-
sion trees on random subsets of the dataset and then combines them to improve the accuracy
and robustness of the model.

e SVR [65]: it is a variation of support vector machines used for regression. Unlike traditional
squared error minimization, SVR fits a curve by maximizing the margin between different
kernels.

e MLP-ANN [38]: MLP-ANN is a feedforward neural network that consists of an input layer,
an output layer, and multiple hidden layers. It is trained iteratively using algorithms like
stochastic gradient descent for squared error minimization.

4.83. Fvaluation metrics

We adopt two evaluation metrics, variance reduction and running time, to quantify the per-
formance of the tested algorithms. To specify, variance reduction is defined as the percentage
decrease of the modeling error variance, i.e.,

02 — ot
€= %CELF - 100%, (15)
2T

where o2 is the modeling error variance of a dataset 7 after the first-order channel estimation
in Section [3.1] and o2 is the final variance after applying the learned loss field via CELF for
shadowing prediction, which is computed as the mean-squared error (MSE):

— . N 2
2 ||ZT WT pH (16)

OCELF — Ny )

where p is the attenuation image learned from Section W is the weight matrix model, and
N7 = |T]| is the size of the dataset 7.

Note that the variance reduction metric in is considered in this work a measure of accuracy
although, by definition, it describes precision. The rationale is that: 1) the ground truth for the
loss field p is unavailable so we cannot directly quantify its accuracy, and 2) the datasets for
training and testing are assumed to be sampled from identical distributions, and thus no sample
bias is involved.

The other metric, running time, is a measure of the computational efficiency of the proposed
CELF algorithm. It has been crucial in time-sensitive applications such as real-time spectrum
access and management systems [66]. This metric includes the execution time for loss field learning
and shadowing loss prediction. Note that the terms “learning” and “training”, “prediction” and
“testing” are used interchangeably for comparing CELF to the selected approaches in Section

We take the following three steps to ensure result comparability. First, all the models are
trained and tested on the same partitioned datasets. Second, the inputs of these ML models are
the 2D coordinates of transmitters and receivers to be consistent with CELF. Lastly, all the results
are obtained by running the algorithm on the same Linux system with a 16-core Intel Xeon Gold
6130 processor.
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Hyperparameter Description Indoor Rooftop

dp Pixel width (m) 0.35 25
Shadowing
2/ 2
75107 variance ratio 0-30 0.58
5 Space((rjr?;lstant 95 35
Aellipse Exces(sr’ifngth 0.18 105
Q Regularization 41 0.3

Table 3: Model hyperparameters of CELF for the indoor and SLC1-Rooftop dataset.

5. Results

Experimental results of the proposed CELF algorithm are given in this section. We first present
three loss field image examples which are learned from the indoor and SLC1 outdoor datasets in
Section 4.1} We then compare CELF with the chosen methods via variance reduction and running
time from Section [£.3] We further explore CELF’s accuracy improvement and robustness when
TIREM is used as the channel base model. A discussion of the ellipse and Cassini oval weight
matrix models is presented next. The impact of the hyperparameters on accuracy is discussed in
the end.

5.1. Ezxample loss field images

This subsection presents two example loss field images using the log-distance path loss model
as the channel base model in Section [3.1] and the ellipse weight matrix model in Section [3.2] The
rationale behind the Rooftop dataset choice is that these receivers, as deployed high above the
ground, give better coverage of the campus area. We select both indoor and outdoor datasets to
discuss CELF’s practical use in various types of environments. The image boundaries are the same
as Fig. [a] and Fig. bl

The statistical analysis follows the next four steps. First, we determine the path loss exponent
n, and the reference loss Pr — Il in via linear regression. The reference distance A is set
to be 1 m across the datasets. The results of the two examples are (1) indoor: n, = 2.26 and
Pr — 11y = —37.04 dBm, and (2) SLC1-Rooftop: n, = 2.73 and Pr — Il = —1.25 dBm.

Second, we tune hyperparameters for CELF and interpret their values. The model hyperpa-
rameters are selected via 5-fold cross-validation. This procedure is to randomly sample 1/5 data
out of the training dataset for hyperparameter validation and overfitting prevention. Their descrip-
tions and values are given in Table . The first hyperparameter, d,, denotes the attenuation image
resolution and impacts both computation time and prediction accuracy. The second shadowing
variance ratio, 0%/c%, represents the contribution of shadowing loss to the total modeling error.
In comparison to outdoor environments, indoor surroundings have more multipath components as
indoor obstacles that obstruct radio wave propagation are relatively uniformly placed throughout
the area. Therefore indoor environments have more significant small-scale fading [46]. The third
space constant ¢ indicates the obstruction size in the environment [46]. We expect that obstacles
will be smaller for the indoor area. In this case, the 0 for the SLC1-Rooftop dataset is 35m, larger
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(b) The SLC1-Rooftop training dataset. The rectangles mark high obstructions and high spatial losses. The red oval
highlights a missing new building at the star (x) location which is correctly captured by CELF.

Figure 5: Example loss images learned via the proposed CELF algorithm and the site maps as a reference.

than 2.5m for the indoor dataset. The next hyperparameter \ is introduced by the ellipse weight
model to select valid pixels for each link. It is determined by the area size and the pixel width.
The last hyperparameter o balances the loss field prior and the data from the area of interest. We
notice that a of the indoor dataset is about 100 times larger than that of the outdoor case. This
can be explained by the 1/+/d; weight in @ The path lengths d; of the indoor measurements are
100 times smaller, which makes o 100 times larger to balance the 1/d; discrepancy in ({12]).

Next, we derive the weight matrix and estimate the loss image via Bayesian linear regression.
Fig.[5|demonstrates the two trained loss images and the site maps as a reference. It can be observed
that they have spatial loss ranges of -1.25 — 1.00 dB and -24 — 24 dB, respectively. Higher losses
can be seen at higher obstructions such as near cubicle walls in Fig. [pal and the marked rectangle
areas in Fig.

The red oval area of Fig. [5b] highlights a mismatch between the estimated two high-loss regions
and one high obstruction of the site map. The loss image estimate is in fact more accurate because
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the terrain profile is outdated; a new building recently constructed at the star (x) location was
not in the database used to generate the left image in Fig. Note that CELF does not use any
terrain or building information. Collecting and maintaining the site-specific terrain dataset could
be time-consuming and expensive, but CELF can use channel loss measurements for accurate and
cost-effective loss field estimation.

The last step for loss field learning is to quantitatively assess the training accuracy of the
learned loss image via variance reduction. For the Rooftop training dataset, the modeling error
variance after the log-distance path loss model is 58.4 dB%. The shadowing loss estimates via CELF
decreases the channel loss variance to 30.7 dB? which is 47.4% less than that of the base model.
For the indoor training dataset, the modeling error variance reduces from 19.8 dB? to 10.1 dB?,
which corresponds to a 49.3% reduction.

5.2. Loss fields’ explainability

The estimated images are called shadowing loss fields as they can be explained as site maps of
additional radio shadowing due to obstacles in the environment. As an example, consider the loss
image of the indoor office in Fig.[pa] We can see from the photo of the area that desks, computers,
and bookcases are generally positioned close to the cubicle walls, and our site data includes the
wall locations. We can see in Fig. that the estimated loss field is lower in the middle of each
cubicle and higher close to the cubicle walls. Similarly, the vertical corridor region at = ~ 3.2 m
experiences lower loss than inside the cubicles. It is intuitively clear that the shadowing loss field
an be explained by the locations of the obstructions in the area.

We further quantify this argument by showing that the increase in the loss field near known
obstructions is, in fact, statistically significant, in both our indoor and outdoor environments.
We apply the two-sample t-test to verify numerically that the loss field is higher near known
obstructions. Let the shadowing loss field near the known obstructions be pp and the field values
at the remaining positions be pr. Our hypotheses to test are: Hy : iy, = fp, and Hy : iy, > fpg,
where p,, and p,, are the sample mean of each population. To identify obstructions for the
SLC1-Rooftop building map, we use any location where the building height is over 30m, which
is the average antenna height of the Rooftop receivers. For the indoor set, we use the cubicle
walls as the obstruction locations. Note that the obstruction locations are not only the exact
coordinates, but also any neighboring pixel within 3% of the field width. This distance accounts
for any potential error between our “ground truth” obstruction location and the location of high
attenuation in the loss field estimate. This 3% of the field width translates to 1.4 and 2.4 times
the pixel width for the indoor and SLCI1-Rooftop cases, respectively. The two-sample t-test for
the loss field estimates shown in Fig. [5al and Fig. result in p-values of 8 x 107133 and 3 x 1073,
respectively. Therefore, we reject Hy in both cases at a significance level of 0.01. We can further
conclude that loss field values are in fact statistically higher near actual attenuating obstructions
in the environment. This validates that the loss field via the proposed CELF is explainable in part
by the locations of significant obstructions in the area, providing a key feature to its users.

5.8. Accuracy analysis

Upon obtaining the loss field, we evaluate CELF’s performance on the test datasets. The
first is accuracy analysis using the variance reduction metric. Fig. [6] demonstrates the modeling
error variance reductions on the indoor and outdoor test datasets using three ML methods and
CELF. It can be seen from Fig. [0 that all ML methods can lower the modeling error variance
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Figure 6: Modeling error variance reductions on the indoor and outdoor test datasets via three ML methods and
CELF.

SLC1 Data Variance (dB?) Maximum
Dataset Stationary Radius<1A; Sum Reduction
Rooftop 3.9 20.3 24.3 58.4%
Fixed 2.9 11.0 13.9 76.9%
Dense 2.6 8.2 10.8 58.8%

Table 4: Data variance when the portable transmitter is stationary or rotating with a radius < 1Ay and the
maximum variance reduction space for CELF. The sum of the data variance approximates the lowest possible
modeling error variance.

to a certain degree. MLP-ANN gives the largest variance reduction among the three ML-based
methods. However, CELF outperforms all the ML models across the test datasets. Take the
indoor dataset for instance. CELF can achieve 40.0% variance reduction which is higher than
MLP-ANN’s 32.1%. It can be further seen that CELF reduces the most variance of the SLC2
outdoor dataset, which validates CELF for channel modeling in the real-world spectrum sharing
scenario. To summarize, we are able to show that the CELF algorithm outperforms the three ML
methods in terms of variance reduction.

To further understand the lowest possible modeling error variance that CELF can reduce to,
we analyze a subset of the SLC1 outdoor dataset which is collected when a portable transmitter is
either stationary or rotating with a radius less than or equal to 1 wavelength (Ay). The subset has
14,026 received power observations. Variation in stationary data approximates the measurement
noise variance, and the data for link distances changing on the order of the signal wavelength can
estimate the small-scale fading loss [24]. Hence the sum of the two is an estimate of the lowest
possible variance of the modeling errors 0%. Tabled|illustrates the variance of the two measurement
sets. Note that the SLC1-Mobile dataset is not applicable as the receivers are constantly moving.
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Training Time (s) Testing Time (ps/link)

Dataset
Random MLP- Random MLP-
Forest SVR ANN CELF Forest SVR ANN CELF

Indoor 0.1 0.0 2.4 0.1 25 21 7 18
SLC1-Rooftop 1.2 7.4 26.8 8.2 5 184 3 102
SLC1-Fized 1.6 28.7 59.7 158 4 323 3 88
SLC1-Mobile 1.6 4.2 13.6 4.8 5 119 2 93
SLC1-Dense 0.7 7.1 25.5 6.0 4 190 1 90
SLC2 7.0 21.8 725 108 4 136 1 46
ANTW 13.6 41.5 177.0 64.6 4 139 1 93

Table 5: Running time comparison for training and testing among the ML models, and the CELF algorithm. We
use the training time for the entire training set to analyze CELF’s loss field learning efficiency. Instead, the testing
time in ps/link is used. It is to evaluate how fast CELF can predict channel loss for one unseen arbitrary link.

We can learn that for the SLC1-Dense dataset, the variance reduction upper limit is 58.8% which,
based on Fig. [6] is 12.9% higher than the result of CELF. By comparing Table [ and Fig. [6] we
can conclude that there is still room to lower the shadowing loss variance, but the proposed CELF
method has shown results closer to the limits.

5.4. Efficiency analysis

We compare the training and testing efficiency of the methods via running time. Their results
are shown in Table 5l First, MLP-ANN, among the remaining methods, is the most efficient for
shadowing loss prediction but the most computationally expensive for training. Second, the slowest
model for testing is SVR except for the indoor dataset. Last, CELF is approximately 3 times faster
than MLP-ANN for shadowing loss field learning. As a result, it can update the model with new
measurements or learn the spatial loss of a new environment with much less computational cost.

Contrary to the training time which is for the entire training set, the prediction time is given in
ps/link. This measure can directly describe, given the learned shadowing loss field, how efficiently
CELF predicts channel loss for a single unseen link. We can see from Table 5| that CELF only
needs on average 76 us for one link prediction. However, it is slower than MLP-ANN across all the
datasets. This is due to the time-expensive weight matrix computation for each link. Optimization
of the weight model is needed for prediction efficiency improvement and remains future work.

5.5. TIREM enhancement

We use TIREM, a hybrid empirical /physical model, as another channel base model to discuss
whether CELF can robustly enhance the channel estimation performance of a base model that
requires no measurements from the area of deployment. A known problem of TIREM is its over-
prediction of shadowing loss as it does not consider signal reflection and diffraction around obstacles
[29]. In this section, we train a newly learned loss field from TIREM’s modeling errors and present
CELF’s accuracy improvement.

Fig. [7| shows an example of TIREM’s channel loss estimation map. A transmitter located
at (1048, 1435) emits signals through the University of Utah campus. The value at each pixel
presents the loss estimate given by TIREM. We can see from Fig. [7| several radiating rays outward
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Figure 7: An example of the channel loss estimation map via TIREM for the University of Utah campus.

from the transmitter due to the LOS paths at different angles. However, regions at a -270 degree
angle relative to the transmitter, e.g., at (900, 1200), show a sharp decline in channel loss. This
corresponds to the lack of considering signal reflection and diffraction.

Table [6] shows the data size, the modeling error variances of the two base models, and the
variance reduction results, all on the outdoor test datasets. The indoor dataset is not included
as the terrain features are unavailable for TIREM. First, we can see higher variances using the
TIREM base model. This is because the terrain profile available for TIREM is outdated and
TIREM does not rely on the measurements from the area of interest. Therefore, TIREM shows
larger variations in the modeling errors than the fitting-based log-distance path loss model. Second,
CELF can decrease the variances across all the datasets, up to 67.5% for the log-distance path loss
model and up to 63.1% for TIREM. Third, we observe smaller variance reductions using TIREM
as the base model for all test datasets except ANTW. It can be that, unlike the log-distance path
loss model, TIREM does characterize shadowing loss but has the over-prediction problem. As a
result, the modeling errors in TIREM contain less shadowing loss and are not as highly spatially
correlated. In summary, it verifies that CELF can robustly improve different base models using
the explainable shadowing loss field.

5.6. The Cassini oval weight matriz models

Different weight matrix models formulate distinct spatial patterns that contribute to the vari-
ations in channel losses due to multipath propagation. That is, obstacles in an environment, e.g.,
outdoor buildings and indoor walls, can reflect, diffract, or scatter a transmitted signal wave, which
causes the channel loss to be dependent on spatial locations in the field [24]. Here we compare the
Cassini oval weight model to the ellipse and discuss their impact on CELF’s accuracy improvement
across datasets.
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Table 6: The modeling error variances of TIREM and the log-distance path loss as the base models and variance
reductions on outdoor test datasets via CELF.

Base Model: Log-distance Path Loss Base Model: TIREM
Dataset Size . .
Modeling CELF Var/ Modeling CELF Var/
Error Error
Var (dB?) Reduction (dB?/%) Var (dB?) Reduction (dB?/%)
SLC1-Rooftop 3,935  58.6 33.8 (42.3%) 176.2 118.0 (33.1%)
SLC1-Fized 7,276 60.0 26.1 (56.5%) 209.4 129.6 (38.1)%
SLC1-Mobile 2,607 40.1 20.3 ( 27.1%) 175.6 135.2 (23.0%)
SLC1-Dense 3,981  26.0 14.0 (46.0%) 163.7 108.9 (33.5%)
SLC2 25,405 67.6 22.0 (67.5%) 166.8 65.6 (60.7%)
ANTW 48,771 34.3 185 (46.1%) 237.7 87.8 (63.1%)
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(a) The loss field via the ellipse model. (b) The obstruction map as a reference. (c) The loss field via the Cassini oval model.

Figure 8: The learned loss fields on the SLC1-Rooftop dataset using the Cassini oval and the ellipse weight models.
The site map is added as a reference but not used by CELF.

We first present the learned loss fields using the SLC1-Rooftop dataset using the Cassini oval
weight model. As seen in Fig. [8) both loss fields share the same spatial loss range of -24 — 24 dB.
Comparing the marked rectangle areas between the obstruction map in Fig. and the loss field
by the Cassini oval in Fig. we can still see the correlation, i.e., higher losses at higher buildings.

A new white rectangle region in Fig. [8aland Fig. [8c highlights a difference in the learned spatial
loss given by the weight models. It can be clearly seen that the loss field via the Cassini oval has a
higher correlation with the reference map, which demonstrates the potential of using Cassini ovals
as the weight matrix model.

We next describe the accuracy improvement results on the test datasets in Fig. [0 It can be
seen that CELF with the Cassini oval model performs better on the SLC1-Rooftop, SLC1-Mobile,
SLC1-Dense, and ANTW test datasets. Counterintuitively, CELF with the Cassini oval reduces
more variance in the SCL1-Dense dataset but less in the SLC2 dataset, even though both are
collected using the same POWDER nodes in the same geographic area. This could be due to the
coverage difference between the datasets or different carrier frequencies. Despite the difference,
CELF with the two weight models result in similar variance reduction. To summarize, we find no
systematic improvement in the Cassini oval model compared to the ellipse model. However, there
may be environments and deployment types in which the Cassini oval is a better fit. Regardless,
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Figure 9: Comparison of CELF’s weight models via variance reductions on the indoor and outdoor test datasets.
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Figure 10: Variance reduction vs. CELF’s hyperparameters on the indoor dataset.

we can report that both the ellipse and Cassini oval models are valid for the weight matrix and
can lower the test variance along with CELF.

5.7. Effect of hyperparameters

CELF’s hyperparameters play a significant role in its performance. We here present variance
reduction as a function of CELF’s three major hyperparameters on the indoor dataset.

Fig. shows that the variances for both training and test datasets mostly reduce less as the
pixel width 9, increases from 0.15m to 15m. Fluctuations occur at near 2.5 m, 3.5 m, 5 m, and
8 m. While the lower the pixel width, the higher the variance reduction, it comes with training
time sacrifice. Fig. discusses the reduction variation vs. the space constant 6. Reductions for
testing and training decrease as ¢ increase from 0.5 m to 15 m. As ¢ approximates the obstruction
size, unreasonablely large space constants give lower variance reduction for training and testing.
Fig. [10c| presents the effect of the excess length Agpipse On variance reduction. It can be seen that
too large of the excess length includes too many pixels for loss field estimation and thus leads to
lower variance reduction.
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6. Conclusion

This paper proposes CELF, which learns a spatial loss field and uses it to predict shadowing
loss on any new links in a deployment area. It formulates total fading loss via a discretized linear
model and applies Bayesian linear regression and optimization for the loss image estimation. CELF
provides an explainable learning approach for fast and precise site-specific channel loss estimation.

The proposed method has been validated with two evaluation metrics, variance reduction and
running time, for training and prediction. It is tested on one indoor and three outdoor real-
world datasets. Three ML-based methods, SVR, random forest, and MLP-ANN, are used for
performance comparison. Experimental results demonstrate that CELF presents larger variance
reductions than all the other methods and can also estimate the loss field more efficiently than
the most accurate MLP-ANN model.

CELF is further tested on a different channel base model, TIREM, and a different weight
matrix model, Cassini oval, for comprehensive discussion. Numerical results show that, with
TIREM, CELF can robustly reduce the test modeling error variance by up to 63%; and with the
Cassini oval, CELF shows similar accuracy improvement as the ellipse weight model.
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