ESE 471 Spring 2021: Homework 5

1. (20 points) In Lecture 10, when deriving the threshold for a 1-D binary detector, we assumed that the noise N had equal variance regardless of whether $s_0(t)$ or $s_1(t)$ was sent. Assume instead that the transmitter is faulty and adds noise to the transmitted signal whenever $s_1(t)$ is sent. That is the receiver measures X as either:

$$
H_0: \qquad X = a_0 + N_0
$$

$$
H_1: \qquad X = a_1 + N_1
$$

where $a_0 = 0$, $a_1 = 1$, and N_0 and N_1 are both zero-mean Gaussian noise, in this case, where N_0 has variance 1 and N_1 has variance 2. Assume that $P[H_0] = P[H_1] = 1/2$. What is the optimal decision region R_0 (the region in which we decide H_0)?

- 2. (10 points) Consider a binary 1-D communication system modeled as $H_0: X = a_0 + W$, or $H_1: X = a_1 + W$, where $a_0 = -1$, $a_1 = +1$, and W is zero mean Gaussian with variance $\sigma_W^2 = 0.3$. First, assume $P[H_0] = P[H_1] = 1/2$.
	- (a) What is the optimal decision threshold γ ?
	- (b) What is the probability of error for the optimal receiver?

For the next two parts, assume that the signals are not equally probable, and instead, $P[H_0] = 0.2$ and $P[H_1] = 0.8$.

- (c) What is the optimal decision threshold γ ?
- (d) What is the probability of error for the optimal receiver?
- 3. Optimal Detection Verification (20 points): Continue to consider the above communication system, with H_0 : $X = a_0 + W$, or $H_1 : X = a_1 + W$, where $a_0 = -1$, $a_1 = +1$, and W is zero mean Gaussian with variance $\sigma_W^2 = 0.3$, and $P[H_0] = 0.2$ and $P[H_1] = 0.8$. In this problem, you will verify experimentally that the optimal decision threshold minimizes the probability of error. In Matlab or Python (or language of your choice),
	- (a) Create a vector of 5000 bits sent by the transmitter, each bit b_l is equal to 0 with probability $P[H_0]$ and equal to 1 with probability $P[H_1]$. Show Matlab output of the histogram of b_l to verify its pmf.
	- (b) Generate X as follows: When $b_l = 0$, let $X = a_0 + W$. When $b_l = 1$, let $X = a_1 + W$. W is generated with σ_W^* randn in Matlab. In Python, use random.gauss(0, σ_W) (after having done an import random). No output is needed for this part.
	- (c) Create a vector listing possible threshold values, $\texttt{etalist} = -2:0.01:2$ in Matlab or numpy.arange(-2, 2.01, 0.01) in Python. For each value η in the list, calculate the bit error rate using a threshold of η . Specifically, make bit decisions by the detection rule, $X \begin{array}{c} H_1 \\ < \\ < \\ H_0 \end{array}$ η , Denoting these bit decisions \hat{b}_l , count the experimental bit error rate for that η . Plot the experimental bit error rate vs. etaList. Draw a vertical line on the plot at $\eta = \gamma$, where γ is the optimal threshold (see Problem 2(c)), and show that the error rate is approximately minimum at the optimal threshold.
	- (d) Do parts (a) through (c) again for the case when H_0 and H_1 are equally probable. The only output necessary is the final plot of experimental bit error rate vs. etaList.