ESE 471 Spring 2021: Homework 9

- 1. (20 points) Design a new wireless communication system for a high data rate VR/AR system that requires a bit rate of 100 Mbps with the following constraints:
 - The system will operate in an band of at most 40 MHz bandwidth at a center frequency of 60 GHz.
 - Assume a transmit power $P_T = 10$ dBm, the antenna gains are $G_t = 1$ dB and $G_r = 7$ dB.
 - The path loss is given by the path loss exponent model with a reference distance of 1 meter, and a path loss exponent of 2.5.
 - Design with a SRRC pulse with an $\alpha \ge 0.3$.
 - The range must be at least 10 m.
 - The receiver has a noise figure F = 7 dB, operating with a $T_0 = 290$ K.
 - It must have a bit error rate of at most 1×10^{-3} to have a sufficient quality of interaction with the user.

Specify a system solution that meets these requirements, including M, modulation, α , bandwidth, and bit rate. You may explore design options either by hand or a link budget spreadsheet (mine, for example), but if you use a spreadsheet please work out the performance of your final design by hand to allow us to check your work.

- 2. (20 points) A communication system is designed to communicate commercial airplane radar information $\{X_i\}$ back to an air traffic control tower. The radar measures either $X_i = 1$ for airplane present in a particular region of focus for this radar or $X_i = 0$ for no airplane present at time *i*. The radar makes a new measurement 5 times per second. Past measurements tell us that the $P[X_i = 1] = 0.01$ at a particular instant. Here we assume that $\{X_i\}$ are independent and identically distributed.
 - (a) What is the entropy rate of this information source, in bits per second?
 - (b) Consider the system that simply sends the one bit value of X_i after each measurement *i*. What is the bit rate of this communication system, in bits per second? (This is not a trick question, it should not involve much work.)
 - (c) Consider this simple lossless compression scheme. Five measurements (over one second) X_i, \ldots, X_{i+4} , are are communicated simultaneously as follows. If all five are '0', then only a single bit '0' is transmitted. If any of the five is 1, then a '1' is transmitted, followed by the five measurements (each one bit) themselves, for a total of 6 bits. What is the average bit rate of this compression scheme, in bits per second?
- 3. (10 points) Let the random process X_i be an i.i.d. sequence of uniformly distributed random variables, each uniformly distributed on a finite event set with size K (*i.e.* $|S_X| = K$).
 - (a) Find the entropy rate H of random process $\{X_i\}$.
 - (b) What minimum rate R_b , in bits per source output, will be necessary to encode the source $\{X_i\}$ without error?
 - (c) Does H increase or decrease with K? Why does it make sense? (Or why does this not make sense?)